Extensive phylogenetic analyses were performed based on sequences of the 16S rRNA gene and two ribosomal protein (rp) genes, rplV (rpl22) and rpsC (rps3), from 46 phytoplasma strains representing 12 phytoplasma 16Sr groups, 16 other mollicutes and 28 Gram-positive walled bacteria. The phylogenetic tree inferred from rp genes had a similar overall topology to that inferred from the 16S rRNA gene. However, the rp gene-based tree gave a more defined phylogenetic interrelationship among mollicutes and Gram-positive walled bacteria. Both phylogenies indicated that mollicutes formed a monophyletic group. Phytoplasmas clustered with Acholeplasma species and formed one clade paraphyletic with a clade consisting of the remaining mollicutes. The closest relatives of mollicutes were low-G+C-content Gram-positive bacteria. Comparative phylogenetic analyses using the 16S rRNA gene and rp genes were performed to evaluate their efficacy in resolving distinct phytoplasma strains. A phylogenetic tree was constructed based on analysis of rp gene sequences from 87 phytoplasma strains belonging to 12 16Sr phytoplasma groups. The phylogenetic relationships among phytoplasmas were generally in agreement with those obtained on the basis of the 16S rRNA gene in the present and previous works. However, the rp gene-based phylogeny allowed for finer resolution of distinct lineages within the phytoplasma 16Sr groups. RFLP analysis of rp gene sequences permitted finer differentiation of phytoplasma strains in a given 16Sr group. In this study, we also designed several semi-universal and 16Sr group-specific rp gene-based primers that allow for the amplification of 11 16Sr group phytoplasmas.
Interaction between phytoplasma and grapevine at the physiological level is still poorly understood, as are plant defence mechanisms against the pathogen. This study investigates the level of gene expression of three selected genes in a large number of grapevine plants belonging to six disease/cultivar groups (healthy Chardonnay, Bois noir-infected Chardonnay, Flavescence dorée-infected Barbera and Prosecco, and recovered Barbera and Prosecco). All plants were grown in vineyards in uncontrolled conditions in order to represent the physiology of disease as accurately as possible. Sucrose synthase was significantly upregulated in infected plants of all cultivars with the lowest P -values in cvs Chardonnay and Prosecco ( P < 0·001) and median fold-change around 2. This clearly indicates that carbohydrate metabolism changed in infected compared to healthy or recovered plants. Alcohol dehydrogenase I was significantly upregulated in infected relative to healthy Chardonnay plants ( P < 0·05) indicating that alcoholic fermentation, a sign of hypoxic conditions, was induced in infected plants. Heat shock protein 70 was upregulated in infected compared to recovered plants only in cv. Prosecco. Linear discriminant analysis showed that classification of samples into disease status groups based on gene expression was highly accurate (82%), indicating that the response of field-grown plants to phytoplasma infection at the level of expression of selected genes was so intensive and uniform that it was possible to detect it in grapevine plants regardless of natural variables.
A 3-year study was carried out in north-east Italy, the site of recent elm yellows epidemics, to identify vectors for the elm yellows phytoplasma. Using PCR analysis, Ulmus minor and Ulmus pumila , each with and without symptoms, were positive for the elm yellows phytoplasma. Macropsis mendax , a univoltine and monophagous leafhopper, was shown to be the vector of the elm yellows-associated disease agent. PCR analyses demonstrated that the insect was infected both in natural conditions and in the screenhouse after acquisition-feeding on infected elm plants. Groups of M. mendax , collected from naturally infected elm trees, transmitted elm yellows phytoplasma to elm test plants. In nature, Alnus glutinosa trees affected by alder yellows were found in the surroundings of yellows-affected elm trees; the associated disease agent of alder yellows was transmitted under controlled conditions from alder to elm test plants by grafting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.