The anaerobic treatment of sulphate-rich wastewater causes sulphate reducing bacteria (SRB) and methanogenic archaea (MA) to compete for the available substrate. The outcome is lower methane yield coefficient and, therefore, a reduction in the energy recovery potential of the anaerobic treatment. Moreover, in order to assess the overall chemical oxygen demand (COD) balance, it is necessary to determine how much dissolved CH(4) is lost in the effluent. The aim of this study is to develop a detailed and reliable method for assessing the COD mass balance and, thereby, to establish a more precise methane yield coefficient for anaerobic systems treating sulphate-rich wastewaters. A submerged anaerobic membrane bioreactor (SAMBR) treating sulphate-rich municipal wastewater was operated at 33 °C for an experimental period of 90 d, resulting in a high COD removal (approximately 84%) with a methane-enriched biogas of 54 ± 15% v/v. The novelty of the proposed methodology is to take into account the sulphide oxidation during COD determination, the COD removed only by MA and the dissolved CH(4) lost with the effluent. The obtained biomethanation yield (333 L CH(4) kg(-1) COD(REM MA)) is close to the theoretical value, which confirms the reliability of the proposed method.
This paper deals with the effect of a bioaugmentation batch enhanced (BABE) reactor implementation in a biological nutrient removal pilot plant on the populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). The results of fluorescence in situ hybridization (FISH) technique showed that AOB and NOB populations were significantly enhanced, from 4 to 8% and from 2 to 9%, respectively, as a result of the BABE reactor implementation. Regarding AOB, the percentage of Nitrosomonas oligotropha was mainly increased (3 to 6%). Regarding NOB, Nitrospirae spp was greatly enhanced (1 to 7%). Both species are considered K-strategist (high affinity to the substrate, low maximum growth rates) and they usually predominate in reactors with low ammonium and nitrite concentrations, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.