This paper proposes a new method to estimate behavioural curves from a stream of Near-Infra-Red (NIR) iris video frames. This method can be used in a Fitness For Duty system (FFD). The research focuses on determining the effect of external factors such as alcohol, drugs, and sleepiness on the Central Nervous System (CNS). The aim is to analyse how this behaviour is represented on iris and pupil movements and if it is possible to capture these changes with a standard NIR camera. The behaviour analysis showed essential differences in pupil and iris behaviour to classify the workers in "Fit" or "Unfit" conditions. The best results can distinguish subjects robustly under alcohol, drug consumption, and sleep conditions. The Multi-Layer-Perceptron and Gradient Boosted Machine reached the best results in all groups with an overall accuracy for Fit and Unfit classes of 74.0% and 75.5%, respectively. These results open a new application for iris capture devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.