The present study investigated the relationship between uncoupling of endothelial nitric oxide synthase (eNOS) and vascular endothelial cell (VEC) oxidative stress (OS) during sepsis and the role of eNOS glutathionylation in eNOS uncoupling of septic VECs. Human umbilical vein endothelial cells (HUVECs) cultured in vitro (EA.hy269 cell line) were incubated with Dulbecco's modified Eagle's medium (DMEM) (normal control group), lipopolysaccharide (LPS) (sepsis group), 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (glutathionylation group), and LPS+ dithiothreitol (DTT) (deglutathionylation sepsis group). As result, compared with the DMEM group, malondialdehyde (MDA) level and uncoupling eNOS activity significantly increased in the LPS and BCNU groups. However, in the LPS + DTT group, only the NO level increased. Compared with the LPS group, MDA level, NO concentration, and normal functional eNOS activity significantly decreased, and uncoupling eNOS activity significantly increased in the BCNU group. In the LPS + DTT group, MDA level and uncoupling eNOS activity significantly decreased, and NO concentration and normal functional eNOS activity significantly increased. During sepsis, the main mechanism for VEC OS was eNOS uncoupling mediated by eNOS glutathionylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.