Being an inexpensive but efficient adsorbent, hydroxyapatite is extensively used for decontaminating wastewater and soils polluted by heavy metals. However, its solubility and grain size can affect its remediation effectiveness. This study investigated the ability of nano-hydroxyapatite (nano-HAP) to adsorb aqueous Cd, Pb and Cu ions from single-metal and multi-metal ions reaction systems. Langmuir and Freundlich isotherm equations were employed to study the sorption constants. Based on the sum of squares errors (SSE), results showed that the Langmuir isotherm better fits sorption data than the Freundlich equation. The sorption affinity of nano-HAP for Pb(II) is always higher than that for Cu(II) and for Cd(II); the sorption maxima for the Cd, Pb and Cu follow the order Pb 2+ > Cu 2+ > Cd 2+ . This could be inversely proportional to the hydrated ionic radii as Pb 2+ (4.01 Å) > Cu 2+ (4.19 Å) > Cd 2+ (4.26 Å). The measured selectivity coefficients in multi-metal (Cd-Pb-Cu) reaction systems shows that Pb has the highest sorption selectivity on nano-HAP among the metals investigated. This sorption selectivity coincided well with the sorption affinity order in mono-metal reaction systems. The pH of the solution is an important parameter in controlling Cd, Pb and Cu ions sorption on nano-HAP. Indeed, the nano-HAP sorption capacity increases with increasing pH up to a value of 6.25. This implies that the removal of metals from the solution is recommended for pH ≈ 6.25 or below, during remediation using nano-HAP as a sorbent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.