Executive SummaryThe objective of this technical report is to analyze the potential for induced seismicity due to a proposed small-scale CO 2 injection project in the Montezuma Hills. We reviewed currently available public information, including 32 years of recorded seismic events, locations of mapped faults, and estimates of the stress state of the region. We also reviewed proprietary geological information acquired by Shell, including seismic reflection imaging in the area, and found that the data and interpretations used by Shell are appropriate and satisfactory for the purpose of this report.The closest known fault to the proposed injection site is the Kirby Hills Fault. It appears to be active, and microearthquakes as large as magnitude 3.7 have been associated with the fault near the site over the past 32 years. Most of these small events occurred 9-17 miles (15-28 km) below the surface, which is deep for this part of California. However, the geographic locations of the many events in the standard seismicity catalog for the area are subject to considerable uncertainty because of the lack of nearby seismic stations; so attributing the recorded earthquakes to motion along any specific fault is also uncertain. Nonetheless, the Kirby Hills Fault is the closest to the proposed injection site and is therefore our primary consideration for evaluating the potential seismic impacts, if any, from injection. Our planned installation of seismic monitoring stations near the site will greatly improve earthquake location accuracy.Shell seismic data also indicate two unnamed faults more than 3 miles east of the project site. These faults do not reach the surface as they are truncated by an unconformity at a depth of about 2,000 feet (610 m). The unconformity is identified as occurring during the Oligocene Epoch, 33.9-23.03 million years ago, which indicates that these faults are not currently active. Farther east are the Rio Vista Fault and Midland Fault at distances of about 6 miles (10 km) and 10 miles (16 km), respectively. These faults have been identified as active during the Quaternary (last 1.6 million years), but without evidence of displacement during the Holocene (the last 11,700 years).* Short biographies of authors are provided in Appendix 1. 1The stress state (both magnitude and direction) in the region is an important parameter in assessing earthquake potential. Although the available information regarding the stress state is limited in the area surrounding the injection well, the azimuth of the mean maximum horizontal stress is estimated at 41° and it is consistent with strike-slip faulting on the Kirby Hills Fault, unnamed fault segments to the south, and the Rio Vista Fault. However, there are large variations (uncertainty) in stress estimates, leading to low confidence in these conclusions regarding which fault segments are optimally oriented for potential slip induced by pressure changes. Uncertainty in the stress state can be substantially reduced by measurements planned when wells are drilled at the s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.