In this work, liquid hot water pretreatment (autohydrolysis) was used to improve enzymatic hydrolysis of a commonly consumed vegetable waste in Spain, Italian green pepper, to finally produce fermentable sugars. Firstly, the effect of temperature and contact time on sugar recovery during pretreatment (in insoluble solid and liquid fraction) was studied in detail. Then, enzymatic hydrolysis using commercial cellulase was performed with the insoluble solid resulting from pretreatment. The objective was to compare results with and without pretreatment. The results showed that the pretreatment step was effective to facilitate the sugars release in enzymatic hydrolysis, increasing the global sugar yield. This was especially notable when pretreatment was carried out at 180 °C for 40 min for glucose yields. In these conditions a global glucose yield of 61.02% was obtained. In addition, very low concentrations of phenolic compounds (ranging from 69.12 to 82.24 mg/L) were found in the liquid fraction from enzymatic hydrolysis, decreasing the possibility of fermentation inhibition produced by these components. Results showed that Italian green pepper is an interesting feedstock to obtain free sugars and prevent the enormous quantity of this food waste discarded annually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.