Abstract:In pattern recognition, it is well known that the classifier performance depends on the classification rule and the complexities presented in the data sets (such as class overlapping, class imbalance, outliers, high-dimensional data sets among others). In this way, the issue of class imbalance is exhibited when one class is less represented with respect to the other classes. If the classifier is trained with imbalanced data sets, the natural tendency is to recognize the samples included in the majority class, ignoring the minority classes. This situation is not desirable because in real problems it is necessary to recognize the minority class more without sacrificing the precision of the majority class. In this work we analyze the behaviour of four classifiers taking into a count a relative balance among the accuracy classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.