Citrus fruits are characterized by the accumulation of high levels of citric acid in the juice sac cells and a decline in acid level toward maturation. It has been suggested that changes in mitochondrial aconitase (EC 4.2.1.3) activity affect fruit acidity. Recently, a cytosolic aconitase (cyt‐Aco) homologous to mammalian iron‐regulated proteins was identified in plants, leading us to re‐evaluate the role of aconitase in acid accumulation. Aconitase activity was studied in 2 contrasting citrus varieties, sweet lime (Citrus limettioides Tan., low acid) and sour lemon (Citrus limon var. Eureka, high acid). Two aconitase isozymes were detected. One declined early in sour lemon fruit development, but was constant throughout sweet lime fruit development. Its reduction in sour lemon was associated with a decrease in aconitase activity in the mitochondrial fraction. Another isozyme was detected in sour lemon toward maturation, and was associated with an increase in aconitase activity in the soluble fraction, suggesting a cytosolic localization. The cyt‐Aco was cloned from lemon juice sac cells, but in contrast to the changes in isozyme activity, its expression was constant during fruit development. We present a model, which suggests that reduction of the mitochondrial aconitase activity plays a role in acid accumulation, while an increase in the cyt‐Aco activity reduces acid level toward fruit maturation.
Five Capsicum species were tested for susceptibility to Tomato yellow leaf curl virus (TYLCV) and the mild strain of TYLCV (TYLCV-Mld). TYLCV was able to infect 30 of 55 genotypes of C. annuum, one of six genotypes of C. chinense, one of two genotypes of C. baccatum, and the only genotype of C. frutescens tested but was unable to infect the one genotype of C. pubescens tested. This is the first evidence for the susceptibility of C. baccatum, C. chinense, and C. frutescens to TYLCV. Unlike TYLCV isolates, TYLCV-Mld was unable to infect C. chinense. No host differences were observed between the Israeli and Florida isolates of TYLCV. None of the Capsicum species showed symptoms after infection with TYLCV or TYLCV-Mld. TYLCV was detected in fruits of C. annuum, but whiteflies were unable to transmit virus from fruits to plants. White-flies were able to transmit both TYLCV and TYLCV-Mld from infected pepper plants to tomato plants. Pepper plants in research plots were found infected with TYLCV at rates as much as 100%. These data demonstrate the ability of some genotypes of pepper to serve as reservoirs for the acquisition and transmission of TYLCV and TYLCV-Mld.
Most citrus (Citrus L. spp.) fruits accumulate a considerable amount of citric acid in the vacuoles of the juice sac cells. As part of research aimed to understand the mechanism of acid accumulation, we compared the gene structures and transcript levels of citrate synthase in sour lemon (high acid, C. limon (L.) Burm.), 'Shamouti' orange (moderate acid, C. sinensis (L.) Osbeck) and sweet lime (acidless, C. limmetioides Tan.). Southern analyses suggested that a single gene for citrate synthase was present in the genomes of all three Citrus varieties. The gene structures seemed to be very similar, with minor differences in Shamouti orange. Overall, the transcript levels of citrate synthase were similar in sweet lime and sour lemon, and about 2-fold lower in Shamouti orange. The enzymatic activity of citrate synthase was compared between sour lemon and sweet lime. In sour lemon, the specific activity of the enzyme was induced early in fruit development and, in parallel with the increase in acid content, reached a maximal level, and did not diminish significantly towards fruit maturation; the pattern and level of activity detected during sweet lime fruit development were similar. These results suggest that the difference in acid accumulation between acidless and acid-containing fruits may not be attributed to changes in the activity of citrate synthase.
Tomato yellow leaf curl virus (TYLCV) full-length DNA was amplified by PCR and cloned into a bacterial plasmid. The cloned TYLCV DNA was excised from the plasmid, ligated and the resulting monomeric circular double-stranded TYLCV DNA was used to inoculate tomato (Solanum lycopersicom) and datura (Datura stramonium) plants by particle bombardment. The bombarded plants produced typical disease symptoms, similar to those produced following whitefly-mediated inoculation, albeit 5-7 days later than whitefly-inoculated plants. The success rate of inoculating tomato plants by particle bombardment averaged 37%, whereas with datura plants, it averaged 85%. With whitefly-mediated inoculation of TYLCV, the success rate of inoculation was also higher in datura plants than in tomato plants. Bombardment of datura plants with a linear form of TYLCV DNA also resulted in viral infection, with an inoculation success rate similar to that with the closed-circular TYLCV DNA. Bombarding datura plants with the bacterial plasmid containing the cloned TYLCV DNA did not result in viral infection, but bombardment with a bacterial plasmid containing a cloned dimer of TYLCV DNA yielded an infection rate of 50-100%. This is the first report of TYLCV inoculation of plants using particle bombardment of a cloned monomeric linear or closed-circular form of TYLCV double-stranded DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.