is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.
AbstractThe temperature evolution during friction stir welding (FSW) and the resulting residual stresses of AZ31 Mg alloy were studied to get a better understanding of the mechanisms involved in this process. The relationship between the processing parameters, the heat and plastic deformation produced and the resulting microstructure and mechanical properties was investigated. Increasing the shoulder diameter or the tool rotation speed or decreasing the welding speed produced an increase in the heat generated during the process and then promoted grain growth. The temperature distribution on the advancing side and on the retreating side differed, and stress levels were higher on the retreating side. The grain size heterogeneity produced by FSW was not the prevailing cause of failure.
The physical properties of tungsten such as the high melting point of 3420°C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate make this material attractive as a plasma facing material. However, the manufacturing of such tungsten parts by mechanical machining such as milling and turning is extremely costly and time intensive because this material is very hard and brittle. Powder Injection Molding (PIM) as special process allows the mass production of components, the joining of different materials without brazing and the creation of composite and prototype materials, and is an ideal tool for scientific investigations. This contribution describes the characterization and analyses of prototype materials produced via PIM. The investigation of the pure tungsten and oxide or carbide doped tungsten materials comprises the microstructure examination, element allocation, texture analyses, and mechanical testing via four-point bend (4-PB). Furthermore, the different materials were characterized by high heat flux (HHF) tests applying transient thermal loads at different base temperatures to address thermal shock and thermal fatigue performance. Additionally, HHF investigations provide information about the thermo-mechanical behavior to extreme steady state thermal loading and measurements of the thermal conductivity as well as oxidation tests were done. Post mortem analyses are performed quantifying and qualifying the occurring damage with respect to reference tungsten grades by metallographic and microscopical means
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.
a b s t r a c tFriction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. Electron back scattered diffraction was used to determine the texture evolution, residual stresses were analysed using X ray diffraction and tensile tests coupled with speckle interferometry were performed. The residual stresses induced during friction stir welding present a major influence on the final mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.