Abstract:Crowdsourcing solutions can be helpful to extract information from disaster-related data during crisis management. However, certain information can only be obtained through similarity operations. Some of them also depend on additional data stored in a Relational Database Management System (RDBMS). In this context, several works focus on crisis management supported by data. Nevertheless, none of them provide a methodology for employing a similarity-enabled RDBMS in disaster-relief tasks. To fill this gap, we introduce a methodology together with the Data-Centric Crisis Management (DCCM) architecture, which employs our methods over a similarity-enabled RDBMS. We evaluate our proposal through three tasks: classification of incoming data regarding current events, identifying relevant information to guide rescue teams; filtering of incoming data, enhancing the decision support by removing near-duplicate data; and similarity retrieval of historical data, supporting analytical comprehension of the crisis context. To make it possible, similarity-based operations were implemented within one popular, open-source RDBMS. Results using real data from Flickr show that our proposal is feasible for real-time applications. In addition to high performance, accurate results were obtained with a proper combination of techniques for each task. Hence, we expect our work to provide a framework for further developments on crisis management solutions.
Although thermal hysteresis might be a problem in the magnetocaloric refrigeration, the same is not necessarily true for thermomagnetic motor applications. This work presents a comparison of the magnetocaloric properties of materials with first order magnetic transition (having large or narrow thermal hysteresis) to those with second order magnetic transition, assessing the application of these materials in thermomagnetic motors through a thermodynamic approach. Results show that the larger the thermal hysteresis, the higher the specific work produced in a thermal cycle. This allows operation at higher temperature differences with high efficiency relative to Carnot efficiency, when compared with systems using narrow hysteresis and second order transition materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.