The osteocyte, a terminally differentiated cell comprising 90%-95% of all bone cells 1,2 , may have multiple functions, including acting as a mechanosensor in bone (re)modeling 3 . Dentin matrix protein 1 (encoded by DMP1) is highly expressed in osteocytes 4 and, when deleted in mice, results in a hypomineralized bone phenotype 5 . We investigated the potential for this gene not only to direct skeletal mineralization but also to regulate phosphate (P i ) homeostasis. Both Dmp1-null mice and individuals with a newly identified disorder, autosomal recessive hypophosphatemic rickets, manifest rickets and osteomalacia with isolated renal phosphate-wasting associated with elevated fibroblast growth factor 23 (FGF23) levels and normocalciuria. Mutational analyses showed that autosomal recessive hypophosphatemic rickets family carried a mutation affecting the DMP1 start codon, and a second family carried a 7-bp deletion disrupting the highly conserved DMP1 C terminus. Mechanistic studies using Dmp1-null mice demonstrated that absence of DMP1 results in defective osteocyte maturation and increased FGF23 expression, leading to pathological changes in bone mineralization. Our findings suggest a bone-renal axis that is central to guiding proper mineral metabolism.Human disorders of phosphate (P i ) handling and skeletal mineralization can result from mutations in PHEX 6 , which cause X-linked hypophosphatemic rickets (XLH). A similar phenotype is also observed in Hyp mice, which have mutant Phex 7 and show increased osteocyte expression of the phosphaturic factor FGF23 (ref. 8 Individuals F1-1 and F1-3 presented with rickets and progressive lower limb deformity in late infancy, whereas sister F1-2 had rachitic changes on a chest X-ray at age 7 months. In contrast, F2-1 presented with a mild genu valgum at 8 years of age. The pre-or off-treatment age-related metabolic profiles for both kindreds were similar, characterized by hypophosphatemia owing to renal phosphate-wasting (serum P i : 0.7-0.9 mmol/l, normal: 1.2-1.8; threshold maximum for renal tubular phosphate reabsorption/glomerular filtration rate (TmP/GFR): 0.61-0.81 mmol/l, lower limit of normal: ≥1.0), high normal to moderately elevated alkaline phosphatase, normal intact parathyroid hormone (PTH) levels (4.6-6.9 pmol/l, normal: 1.6-6.9), normocalcemia (ionized calcium: 1. Resolution of rickets and normalization of alkaline phosphatase were observed during treatment with phosphate supplementation and calcitriol; however, the TmP/GFR remained low. Linear growth trajectories were heterogeneous among the affected individuals: affected individuals in F1 had a mid-parental height of 154.5 cm (5 th -10 th percentiles), with F1-1 and F1-2 measuring 153 cm (5 th percentile) and 136.5 cm (<5 th percentile) at final adult height, respectively. F1-3 had a height of 153.5 cm at 10 months post-menarche, well within the genetic target. The affected individual in F-2 had a final adult height of 172 cm (90 th -95 th percentile), 3 cm above the upper limit of her genetic ta...
We examine clonal murine calvarial MC3T3-E1 cells to determine if they exhibit a developmental sequence similar to osteoblasts in bone tissue, namely, proliferation of undifferentiated osteoblast precursors followed by postmitotic expression of differentiated osteoblast phenotype. During the initial phase of developmental (days 1-9 of culture), MC3T3-E1 cells actively replicate, as evidenced by the high rates of DNA synthesis and progressive increase in cell number, but maintain a fusiform appearance, fail to express alkaline phosphatase, and do not accumulate mineralized extracellular collagenous matrix, consistent with immature osteoblasts. By day 9 the cultures display cuboidal morphology, attain confluence, and undergo growth arrest. Downregulation of replication is associated with expression of osteoblast functions, including production of alkaline phosphatase, processing of procollagens to collagens, and incremental deposition of a collagenous extracellular matrix. Mineralization of extracellular matrix, which begins approximately 16 days after culture, marks the final phase of osteoblast phenotypic development. Expression of alkaline phosphatase and mineralization is time but not density dependent. Type I collagen synthesis and collagen accumulation are uncoupled in the developing osteoblast. Although collagen synthesis and message expression peaks at day 3 in immature cells, extracellular matrix accumulation is minimal. Instead, matrix accumulates maximally after 7 days of culture as collagen biosynthesis is diminishing. Thus, extracellular matrix formation is a function of mature osteoblasts. Ascorbate and beta-glycerol phosphate are both essential for the expression of osteoblast phenotype as assessed by alkaline phosphatase and mineralization of extracellular matrix. Ascorbate does not stimulate type I collagen gene expression in MC3T3-E1 cells, but it is absolutely required for deposition of collagen in the extracellular matrix. Ascorbate also induces alkaline phosphatase activity in mature cells but not in immature cells. beta-glycerol phosphate displays synergistic actions with ascorbate to further stimulate collagen accumulation and alkaline phosphatase activity in postmitotic, differentiated osteoblast-like cells. Mineralization of mature cultures requires the presence of beta-glycerol phosphate. Thus, MC3T3-E1 cells display a time-dependent and sequential expression of osteoblast characteristics analogous to in vivo bone formation. The developmental sequence associated with MC3T3-E1 differentiation should provide a useful model to study the signals that mediate the switch between proliferation and differentiation in bone cells, as well as provide a renewable culture system to examine the molecular mechanism of osteoblast maturation and the formation of bone-like extracellular matrix.
The regulation of the phosphaturic factor fibroblast growth factor 23 (FGF23) is not well understood. It was found that administration of 1,25-dihydroxyvitamin D 3 (1,25[OH] 2 D 3 ) to mice rapidly increased serum FGF23 concentrations from a basal level of 90.6 ؎ 8.1 to 213.8 ؎ 14.6 pg/ml at 8 h (mean ؎ SEM; P < 0.01) and resulted in a four-fold increase in FGF23 transcripts in bone, the predominate site of FGF23 expression. In the Hyp-mouse homologue of X-linked hypophosphatemic rickets, administration of 1,25(OH) 2 D 3 further increased circulating FGF23 levels. In Gcm2 null mice, low 1,25(OH) 2 D 3 levels were associated with a three-fold reduction in FGF23 levels that were increased by administration of 1,25 ( FGF23 also suppresses 1␣ hydroxylase activity in the proximal renal tubule, leading to reduced circulating levels of 1,25(OH) 2 D 3 (2,10,14,15). The significance of FGF23 regulation of 1,25(OH) 2 D 3 production is not clear, but the findings that FGF23 is produced predominantly by osteoblasts in bone and that FGF23 regulates phosphate reabsorption and 1,25(OH) 2 D 3 production by the kidney raise the possibility that FGF23 may be involved in a bone-kidney axis that controls phosphate and vitamin D homeostasis (16,17). How FGF23 is integrated with the vitamin D-parathyroid hormone (PTH) axis, which plays a central role in calcium homeostasis, skeletal development, and mineralization (18), however, is not clear. Understanding the effects of 1,25(OH) 2 D 3 on FGF23 production is important, because vitamin D therapy often is used to treat FGF23-mediated hypophosphatemic disorders, such as XLH (19).In an effort to understand more fully the regulation of FGF23 expression in osteoblasts and bone, we assessed the effect of 1,25(OH) 2 D 3 administration on circulating levels of FGF23 in wild-type Gcm2 null (20) and Hyp mice (21), as well as the effects of 1,25(OH) 2 D 3 on the FGF23 transcripts in bone. In addition, we investigated the ability of 1,25(OH) 2 D 3 to regulate endogenous FGF23 transcripts and the activity of a transfected murine FGF23 promoter luciferase reporter in osteoblasts. Our findings demonstrate the importance of bone as a target for vitamin D-mediated increments in FGF23 production and suggest that FGF23 production serves as a counterregulatory hormone to enhance renal phosphate clearance in response to vitamin D-mediated increments in gastrointestinal phosphate absorption and decrements in the phosphaturic hormone PTH. Materials and Methods 1,25(OH) 2 D 3 and PTH AdministrationBoth Hyp mice (21) and C57BL/6J mice were purchased from Jackson Laboratory (Bar Harbor, ME). Male and female Gcm2 ϩ/Ϫ mice were mated to generate homozygous Gcm2 null mice that lacked parathyroid glands (22). All mice were maintained and used in accordance with recommendations in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.