Although the dramatic climate disruptions of the last glacial period have received considerable attention, relatively little has been directed toward climate variability in the Holocene (11,500 cal yr B.P. to the present). Examination of ?50 globally distributed paleoclimate records reveals as many as six periods of significant rapid climate change during the time periods 9000"8000, 6000"5000, 4200"3800, 3500"2500, 1200"1000, and 600"150 cal yr B.P. Most of the climate change events in these globally distributed records are characterized by polar cooling, tropical aridity, and major atmospheric circulation changes, although in the most recent interval (600"150 cal yr B.P.), polar cooling was accompanied by increased moisture in some parts of the tropics. Several intervals coincide with major disruptions of civilization, illustrating the human significance of Holocene climate variability.
Abstract. The Greenland Ice Sheet Project 2 glaciochemical series (sodium, potassium, ammonium, calcium, magnesium, sulfate, nitrate, and chloride) provides a unique view of the chemistry of the atmosphere and the history of atmospheric circulation over both the high latitudes and mid-low latitudes of the northern hemisphere. Interpretation of this record reveals a diverse array of environmental signatures that include the documentation of anthropogenically derived pollutants, volcanic and biomass burning events, storminess over marine surfaces, continental aridity and biogenic source strength plus information related to the controls on both high-and low-frequency climate events of the last 110,000 years. Climate forcings investigated include changes in insolation of the order of the major orbital cycles that control the long-term behavior of atmospheric circulation patterns through changes in ice volume (sea level), events such as the Heinrich events (massi've discharges of icebergs first identified in the marine record) that are found to operate on a 6100-year cycle due largely to the lagged response of ice sheets to changes in insolation and consequent glacier dynamics, and rapid climate change events (massive reorganizations of atmospheric circulation) that are demonstrated to operate on 1450-year cycles. Changes in insolation and associated positive feedbacks related to ice sheets m•y assist in explaining favorable time periods and controls on the amplitude of massive rapid climate change events. Explanation for the exa•t timing and global synchroneity of these events is, however, more complicated. Preliminary evidence points to possible solar variability-climate associations for these events and perhaps others that are embedded in our ice-corederived atmospheric circulation records.
Glaciochemical time series developed from Summit, Greenland, indicate that the chemical composition of the atmosphere was dynamic during the Holocene epoch. Concentrations of sea salt and terrestrial dusts increased in Summit snow during the periods 0 to 600, 2400 to 3100, 5000 to 6100, 7800 to 8800, and more than 11,300 years ago. The most recent increase, and also the most abrupt, coincides with the Little Ice Age. These changes imply that either the north polar vortex expanded or the meridional air flow intensified during these periods, and that temperatures in the mid to high northern latitudes were potentially the coldest since the Younger Dryas event.
Sulfate concentrations from continuous biyearly sampling of the GISP2 Greenland ice core provide a record of potential climate-forcing volcanism since 7000 B.C. Although 85 percent of the events recorded over the last 2000 years were matched to documented volcanic eruptions, only about 30 percent of the events from 1 to 7000 B.C. were matched to such events. Several historic eruptions may have been greater sulfur producers than previously thought. There are three times as many events from 5000 to 7000 B.C. as over the last two millennia with sulfate deposition equal to or up to five times that of the largest known historical eruptions. This increased volcanism in the early Holocene may have contributed to climatic cooling.
Major ion series developed from new subannual scale sampling of an ice core from central Greenland are calibrated with instrumental series of atmospheric sea-level pressure recording major marine (Icelandic Low) and terrestrial (Siberian High) atmospheric circulation systems to provide proxy records of atmospheric circulation over the past 1400 years. Examination of the proxy records reveals: major changes in behaviour of these systems c. ad 1400, multidecadal-and centennial-scale periodic components, characterization of mean sea-level pressure anomaly elds during the 'Little Ice Age' and the 'Mediaeval Warm Period', the potential role of solar forcing, coupled ocean-atmosphere associations, and a perspective within which the characteristics of instrumental-era climate can be assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.