When incubated under simulated microgravity (s-microg), endothelial cells (EC) form tubular structures that resemble vascular intimas. This delayed formation of 3D EC structures begins between the 5th and 7th day of culturing EC under conditions of s-microg, when double-row cell assemblies become visible. With the aim of learning about this initial phase of tubular structure formation, we found that NFkappaBp65 protein content was similar in all cell populations, but gene and protein expression of phosphokinase A catalytic subunit, phosphokinase Calpha, and extracellular signal-regulated kinases 1 and 2 was altered in cells cultured under s-microg. Apoptosis remained below 30% in all EC cultures. In contrast to controls, the 7-day-old s-microg cultures contained 3D aggregates with proliferating cells, enhanced numbers of necrotic cells, and osteopontin-negative EC as well as supernatants with reduced quantities of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), soluble TNFRSF5, TNFSF5, intercellular adhesion molecule-1, tumor necrosis factor receptor 2, IL-18, complement C3, and von Willebrand factor. VEGF and/or bFGF (10 ng/mL) application influenced the accumulation of proteins in supernatants more profoundly under 1 g than under s-microg. These findings provide evidence that phosphokinase Calpha plays a key role in tube formation. Improving the interaction of VEGF and/or bFGF with EC under s-microg could enhance the engineering of vascular intimas.
High content cell-based screens are rapidly gaining popularity in the context of neuronal regeneration studies. To analyze neuronal morphology, automatic image analysis pipelines have been conceived, which accurately quantify the shape changes of neurons in cell cultures with non-dense neurite networks. However, most existing methods show poor performance for well-connected and differentiated neuronal networks, which may serve as valuable models for inter alia synaptogenesis. Here, we present a fully automated method for quantifying the morphology of neurons and the density of neurite networks, in dense neuronal cultures, which are grown for more than 10 days. MorphoNeuroNet, written as a script for ImageJ, Java based freeware, automatically determines various morphological parameters of the soma and the neurites (size, shape, starting points, and fractional occupation). The image analysis pipeline consists of a multi-tier approach in which the somas are segmented by adaptive region growing using nuclei as seeds, and the neurites are delineated by a combination of various intensity and edge detection algorithms. Quantitative comparison showed a superior performance of MorphoNeuroNet to existing analysis tools, especially for revealing subtle changes in thin neurites, which have weak fluorescence intensity compared to the rest of the network. The proposed method will help determining the effects of compounds on cultures with dense neurite networks, thereby boosting physiological relevance of cell-based assays in the context of neuronal diseases.
One of the objectives of the current international space programmes is to investigate the possible effects of the space environment on the crew health. The aim of this work was to assess the particular effects of simulated microgravity on mature primary neuronal networks and specially their plasticity and connectivity. For this purpose, primary mouse neurons were first grown for 10 days as a dense network before being placed in the Random Positioning Machine (RPM), simulating microgravity. These cultures were then used to investigate the impact of short- (1 h), middle- (24 h) and long-term (10 days) exposure to microgravity at the level of neurite network density, cell morphology and motility as well as cytoskeleton properties in established two-dimensional mature neuronal networks. Image processing analysis of dense neuronal networks exposed to simulated microgravity and their subsequent recovery under ground conditions revealed different neuronal responses depending on the duration period of exposure. After short- and middle-term exposures to simulated microgravity, changes in neurite network, neuron morphology and viability were observed with significant alterations followed by fast recovery processes. Long exposure to simulated microgravity revealed a high adaptation of single neurons to the new gravity conditions as well as a partial adaptation of neuronal networks. This latter was concomitant to an increase of apoptosis. However, neurons and neuronal networks exposed for long-term to simulated microgravity required longer recovery time to re-adapt to the ground gravity. In conclusion, a clear modulation in neuronal plasticity was evidenced through morphological and physiological changes in primary neuronal cultures during and after simulated microgravity exposure. These changes were dependent on the duration of exposure to microgravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.