Summary A method of chronological data storage and reverse computation is described by which bio-electrical phenomena preceding 'spontaneous' events within the nervous system can be analysed if these events appear repeatedly and are capable of triggering a computer. Slow brain potentials accompanying voluntary and passive movements of the limbs were analysed by this method. These potentials were recorded from different points of the scalp from 12 healthy subjects in 94 experiments with more than 100 movements in each record. At times artifacts were superimposed upon cerebral potentials. The former were identified, and, as far as possible, eliminated.Voluntary hand or foot movements are preceded by a slowly increasing surface-negative cortical potential of 10-15 μV, called readiness potential. This potential is maximal over the contralateral precentral region, but shows bilateral spread and is larger over the frontal than over the occipital areas. The readiness potential increases with intentional engagement and is reduced by mental indifference of the subject.Voluntary movements are followed by a complex potential with an early positive phase that begins 30-90 msec after the onset of movement. The late potentials following voluntary movements are similar to those after passive movements. Both resemble the late bilateral components of the evoked potentials after electrical stimulation of peripheral nerves. Some variable differences between the early components of the potentials after the onset of active and passive movements require further investigation.No relation between the onset of voluntary movements and the phase of the alpha rhythm could be detected.
In order to investigate functional topography of human hand somatosensory cortex we recorded somatosensory evoked fields (SEFs) on MEG during the first 40 ms after stimulation of median nerve, ulnar nerve, and the 5 digits. We applied dipole modeling to determine the three-dimensional cortical representations of different peripheral receptive fields. Median nerve and ulnar nerve SEFs exhibited the previously described N20 and P30 components with a magnetic field pattern emerging from the head superior and re-entering the head inferior for the N20 component; the magnetic field pattern of the P30 component was of reversed orientation. Reversals of field direction were oriented along the anterior-posterior axis. SEFs during digit stimulation showed analogous N22 and P32 components and similar magnetic field patterns. Reversals of field direction showed a shift from lateral inferior to medial superior for thumb to little finger. Dipole modeling yielded good fits at these peak latencies accounting for an average of 83% of the data variance. The cortical digit representations were arranged in an orderly somatotopic way from lateral inferior to medial superior in the sequence thumb, index finger, middle finger, ring finger, and little finger. Median nerve cortical representation was lateral inferior to that of ulnar nerve. Isofield maps and dipole locations for these components are consistent with neuronal activity in the posterior bank of central fissure corresponding to area 3b. We conclude that SEFs recorded on MEG in conjunction with source localization techniques are useful to investigate functional topography of human hand somatosensory cortex non-invasively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.