The influence of temperature on the retention behavior of epirubicin and its analogues on high purity silica with reversed-phase solvents has been systematically investigated. It was found that temperature effects on retention are highly dependent on the type and concentration of organic modifier, as well as the pH of the mobile phase. In organic-rich mobile phases, the type of organic modifier plays an important role. With an aprotic solvent as modifier, retention times show anomalous increases with elevated temperature. At the same time, both efficiency and resolution are significantly improved but this is not the situation with a protic solvent as modifier. In addition, temperature shows different effects on retention time and selectivity when the pH is changed, and temperature-dependent selectivity reversal is found at higher pHs. In aqueousrich mobile phases, regardless of the nature of the organic solvent and pH, retention of solutes drops as temperature is raised. It seems that the effect of temperature on chromatographic behavior of the solutes on bare silica using mobile phases containing various organic modifiers or pHs, results from a number of different retention mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.