Siloxane fouling release coatings are currently the only viable non-toxic commercial alternative to toxic biocide antifouling paints. However, they only partially inhibit biofouling since biofilms remain a major issue. With the aim to improve the bacterial resistance of siloxane coatings modified with non-ionic surfactant (NIS), antioxidant (AO) or both NIS/AO, the ability of PEG-silane co-cross-linker was investigated to reduce Cobetia marina adhesion and multispecies biofilm formation from natural seawater. Surface physical-chemical and physical-mechanical parameters relevant to bio-adhesion were estimated before the testing of the biofilm formation. Slightly reduced biofilm from C. marina and sharply reduced multispecies biofilm, formed in natural sea water, were found on the PEG-silane co-cross-linked coatings without modifying additives. However, both C. marina growth and biofilm formation from natural sea water were sharply reduced on the PEG-silane co-cross-linked coatings containing NIS or AO, even more, no C. marina adhesion was seen on the coating containing NIS and AO simultaneously. Possible explanations of the observed effects are presented in this article. It was concluded that the PEG-silane co-cross-linker, toghether with NIS and AO, can be used as an efficient tool to additionally reduce the bioadhesion of Gram-negative marine bacteria and multispecies biofilm formation on siloxane antifouling coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.