The mechanical properties and microstructure of two heats of AF1410 steel were compared. The first heat, heat 811, contained a titanium addition of 0.02 wt pct, while the second heat, heat 91, contained no titanium, manganese, or other strong sulfide formers. The sulfur in heat 811 was gettered as titanium carbosulfide, while in heat 91 the sulfides were chromium sulfide. The toughness of heat 811 was found to be much enhanced compared to heat 91, with Charpy impact energies of 176 J and 79 J and K IC fracture toughness values of and , respectively. This significant difference in fracture toughness is attributed to the fact that titanium carbosulfide particles are more resistant to void nucleation than the chromium sulfide particles, which appear to nucleate voids at the onset of plastic strain. In addition to altering the sulfide particle type, the titanium addition also results in the presence of undissolved MC carbides in the titanium-modified steel in addition to the M 2 C carbides found in heat 91. These carbides act as grain growth inhibitors, resulting in a finer prior austenite grain size and martensite packet size in heat 811. 170 MPa.m 1 / 2 235 MPa.m 1 / 2
The present article describes the creation of dopant inclusions in aluminum-potassium-silicon (AKS)-doped molybdenum powder and the generation of potassium bubbles in doped molybdenum wire. Molybdenum wire is used extensively in the incandescent lamp industry for coiling mandrels, filament support wires, and foil seals. The AKS-doped molybdenum wire is an important product, because it possesses greater high-temperature strength and a higher recrystallization temperature than undoped molybdenum; both of these properties are important for structural applications in lamps. The AKSdoped molybdenum wire is produced in a similar manner to AKS-doped tungsten wire, but lower processing temperatures are typically used for the production of molybdenum wire. Previous studies on AKS-doped tungsten wire have shown that the dispersion which provides the interlocking grain structure in recrystallized tungsten wire is bubbles of elemental potassium; these enhance incandescent lamp filament life. However, there is little previous work on the potassium-containing dispersion in AKS-doped molybdenum wire. In AKS-doped molybdenum, the dispersion can be either potassium bubbles, or solid oxide particles, depending on the processing method. This article will describe a series of analyses of doped molybdenum wire and its precursors, namely, doped powder and sintered ingots. The roles of high-and low-temperature sintering are also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.