Ranking algorithms are deployed widely to order a set of items in applications such as search engines, news feeds, and recommendation systems. Recent studies, however, have shown that, left unchecked, the output of ranking algorithms can result in decreased diversity in the type of content presented, promote stereotypes, and polarize opinions. In order to address such issues, we study the following variant of the traditional ranking problem when, in addition, there are fairness or diversity constraints. Given a collection of items along with 1) the value of placing an item in a particular position in the ranking, 2) the collection of sensitive attributes (such as gender, race, political opinion) of each item and 3) a collection of fairness constraints that, for each k, bound the number of items with each attribute that are allowed to appear in the top k positions of the ranking, the goal is to output a ranking that maximizes the value with respect to the original rank quality metric while respecting the constraints. This problem encapsulates various well-studied problems related to bipartite and hypergraph matching as special cases and turns out to be hard to approximate even with simple constraints. Our main technical contributions are fast exact and approximation algorithms along with complementary hardness results that, together, come close to settling the approximability of this constrained ranking maximization problem. Unlike prior work on the approximability of constrained matching problems, our algorithm runs in linear time, even when the number of constraints is (polynomially) large, its approximation ratio does not depend on the number of constraints, and it produces solutions with small constraint violations. Our results rely on insights about the constrained matching problem when the objective function satisfies certain properties that appear in common ranking metrics such as discounted cumulative gain (DCG), Spearman's rho or Bradley-Terry, along with the nested structure of fairness constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.