The title enzyme deactivates the potent carbapenem antibiotic imipenem in the kidney, producing low antibiotic levels in the urinary tract. A series of (Z)-2-(acylamino)-3-substituted-propenoic acids (3) are specific, competitive inhibitors of the enzyme capable of increasing the urinary concentration of imipenem in vivo. Many of the compounds were prepared in one step from an alpha-keto acid and a primary amide. The optimum R2 groups are 2,2-dimethyl, -dichloro, and -dibromocyclopropyl. With R2 = 2,2-dimethylcyclopropyl (DMCP), a wide variety of R3 groups including alkyl, oxa- and thiaalkyl, and alkyl groups containing acidic, basic, and neutral substituents give effective inhibitors with Ki values of 0.02-1 microM and a range of pharmacokinetic properties. By resolution of enantiomers and X-ray crystallography, the enzyme-inhibitory activity of the DMCP group was found to reside with the 1S isomer. The cysteinyl compound 176 (cilastatin, MK-0791) has the desired pharmacological properties and has been chosen for combination with imipenem.
Racemic 9-[(2,3-dihydroxy-1-propoxy)methyl]guanine [(+/-)-iNDG], a new analogue of acyclovir (ACV) and a structural analogue of 2'-nor-2'-deoxyguanosine (2'NDG), was synthesized and found to inhibit the replication of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequently, its optical isomers, (R)- and (S)-iNDG, were prepared from chiral intermediates. The chloromethyl ethers of 1,2-di-O-benzyl-D- and -L-glycerol were made and reacted with tris(trimethylsilyl)guanine to give the 9-alkylated guanines, which were deprotected by catalytic hydrogenolysis. Against HSV-1 and HSV-2 in cell culture, (S)-iNDG was approximately 10- to 25-fold more active than the R enantiomer and had an ED50 comparable to those for ACV and 2'NDG. The inferior activity of (R)-iNDG paralleled the poor inhibition of viral DNA polymerase by its phosphorylation products. In mice infected intraperitoneally or orofacially with HSV-1 or intravaginally with HSV-2, (S)-9-[(2,3-dihydroxy-1-propoxy)methyl]guanine [(S)-iNDG] was less efficacious than 2'NDG but comparable to or more active than ACV.
The antiherpetic agent 9-[(2,3-dihydroxy-1-propoxy)methyl]guanine (iNDG) is phosphorylated by HSV1 thymidine kinase, and its phosphorylated products inhibit DNA polymerase activity. iNDG exists in two enantiomeric forms, each with a primary and a secondary hydroxyl; thus, a number of possibilities for preferential phosphorylation exist, which were explored in this study. HSV1 thymidine kinase phosphorylates the primary hydroxyl of both the R and the S isomers of iNDG. This was established by comparison with analogues in which either the primary or the secondary hydroxyl was replaced by fluorine or hydrogen and also by a study of the NMR spectrum of the monophosphate. GMP kinase phosphorylates the R and the S monophosphates to the respective diphosphates. Further phosphorylation, however, is much more efficient with the S than with the R isomer. Furthermore, (S)-iNDG triphosphate is a more potent inhibitor of HSV1 DNA polymerase than (R)-iNDG triphosphate. These differences in the biochemical specificities of the two isomers account for the observed higher antiviral potency of (S)-iNDG as compared to that of (R)-iNDG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.