Diffusion weighted MRI was performed on patients with acute vertebral body compression. The usefulness of the apparent diffusion coefficient (ADC) in differentiating between benign and malignant fractures was evaluated. A total of 49 acute vertebral body compression fractures were found in 32 patients. 25 fractures in 18 patients were due to osteoporosis, 18 fractures in 12 patients were histologically proven to be due to malignancy, and 6 fractures in 2 patients were due to tuberculosis. Signal intensities on T(1) weighted, short tau inversion recovery (STIR) and diffusion weighted images were compared. ADC values of normal and abnormal vertebral bodies were calculated. Except for two patients with sclerotic metastases, benign acute vertebral fractures were hypointense and malignant acute vertebral fractures were hyperintense with respect to normal bone marrow on diffusion weighted images. Mean combined ADCs (ADC(cmb); average of the combined ADCs in the x, y and z diffusion directions) were 0.23 x 10(-3) mm(2) s(-1) in normal vertebrae, 0.82 x 10(-3) mm(2) s(-1) in malignant acute vertebral fractures and 1.94 x 10(-3) mm(2) s(-1) in benign acute vertebral fractures. The differences between ADC(cmb) values were statistically significant (p<0.001). The ADC is useful in differentiating benign from malignant acute vertebral body compression fractures, but there may be overlapping ADC values between malignant fractures and tuberculous spondylitis.
The recommended level may not be the optimum setting. Dose reduction of 40 % is possible on our system in paediatric brain CT without affecting the diagnostic quality of the images.
The aim of the study was to investigate the feasibility of using digital subtraction in contrast-enhanced MR imaging of the brain to reduce the MR contrast dosage without jeopardizing patient care. Fifty-two patients with intracranial lesions, either intra-axial or extra-axial, detected by computerized tomography were selected for contrast-enhanced MR imaging with half-dose and full-dose of gadopentetate dimeglumine. The half-dose unsubtracted, full-dose unsubtracted, and half-dose subtracted MR images were visually assessed by counting the number of enhancing brain lesions in the images and quantitatively analyzed by computing their lesion contrast-to-background ratios (CBR). The visual conspicuity of the half-dose subtracted MR images was comparable to that of the full-dose unsubtracted MR images ( p>0.05), whereas the CBR of the half-dose subtracted images was approximately two to three times higher than that of the full-dose unsubtracted images. The half-dose subtracted T1-weighted spin-echo images might be able to replace the conventional standard-dose T1-weighted spin-echo images in MR imaging of the brain.
Confluent hepatic fibrosis is a special entity of liver cirrhosis that can result in gross distortion of the normal liver anatomy. Rarely, its distorted appearance can mimic malignant liver neoplasm on screening ultrasonography that might introduce diagnostic confusion. Computed tomography scanning with three‐dimensional reconstruction is crucial in making accurate diagnostic differentiation. Here, we report an unusual case of confluent hepatic fibrosis that presented as a suspicious liver mass on ultrasonography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.