The gradient method for minimize a differentiable convex function on Riemannian manifolds with lower bounded sectional curvature is analyzed in this paper. The analysis of the method is presented with three different finite procedures for determining the stepsize, namely, Lipschitz stepsize, adaptive stepsize and Armijo's stepsize. The first procedure requires that the objective function has Lipschitz continuous gradient, which is not necessary for the other approaches. Convergence of the whole sequence to a minimizer, without any level set boundedness assumption, is proved. Iteration-complexity bound for functions with Lipschitz continuous gradient is also presented. Numerical experiments are provided to illustrate the effectiveness of the method in this new setting and certify the obtained theoretical results. In particular, we consider the problem of finding the Riemannian center of mass and the so-called Karcher's mean. Our numerical experiences indicate that the adaptive stepsize is a promising scheme that is worth considering.
In this paper, we investigate global convergence properties of the inexact nonsmooth Newton method for solving the system of absolute value equations (AVE). Global Q-linear convergence is established under suitable assumptions. Moreover, we present some numerical experiments designed to investigate the practical viability of the proposed scheme.
The subgradient method for convex optimization problems on complete Riemannian manifolds with lower bounded sectional curvature is analyzed in this paper. Iteration-complexity bounds of the subgradient method with exogenous step-size and Polyak's step-size are stablished, completing and improving recent results on the subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.