Plant polyphenolic compounds are considered a promising source for new antibacterial agents. In this study, we evaluated the antimicrobial activity of a collection of resveratrol-derived monomers and dimers screened as single molecules against a panel of nine foodborne pathogens. The results demonstrated that two monomers (i.e., pterostilbene 2 and (E)-3-hydroxy-4′,5-dimethoxystilbene 9) and three dimers (i.e., δ-viniferin 10, viniferifuran 14 and dehydro-δ-viniferin 15) were endowed with significant antibacterial activity against gram-positive bacteria. The exposure of gram-positive foodborne pathogens to 100 µg/mL of 2, 9 and 15 induced severe cell membrane damage, resulting in the disruption of the phospholipid bilayer. The most promising dimeric compound, dehydro-δ-viniferin 15, was tested against Listeria monocytogenes, resulting in a loss of cultivability, viability and cell membrane potential. TEM analysis revealed grave morphological modifications on the cell membrane and leakage of intracellular content, confirming that the cell membrane was the principal biological target of the tested derivative.
The aims were: (1) to follow the freshness decay of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures (4.3, 8.1 and 15.5 degrees C) by applying traditional methods (microbiological counts, color evaluation, thiobarbituric acid assay TBA, headspace gas composition) and e-nose; (2) to model the decay kinetics to obtain information about the maximum shelf life as function of storage conditions. The minced beef, packaged in modified atmosphere was supplied by a manufacturer at the beginning of its commercial life. The study demonstrated the ability of the traditional methods to describe the kinetics of freshness decay. The modeling of the experimental data and the comparison with microbiological or chemical thresholds allowed the setting, for each index, of a stability time above which the meat was no longer acceptable. The quality decay of meat was also evaluated by the headspace fingerprint of the same set of samples by means of a commercial e-nose. A clear discrimination between "fresh" and "old" samples was obtained using PCA and CA, determining at each temperature a specific range of stability time. The mean value of the stability times calculated for each index was 9 days at 4.3 degrees C (recommended storage temperature), 3-4 days at 8.1 degrees C (usual temperature in household refrigerators) and 2 days at 15.5 degrees C (abuse temperature). Resolution of the stability times allowed calculation of mean Q(10) values, i.e. the increase in rate for a 10 degrees C increase in temperature. The results show that the Q(10) values from the traditional methods (3.6-4.0 range) overlapped with those estimated with e-nose and color indexes (3.4 and 3.9, respectively).
Putative Pseudomonas spp. (102 isolates) from different foods were first characterised by API 20NE and then tested for some enzymatic activities (lipase and lecithinase production, starch hydrolysis and proteolytic activity). However subsequent molecular tests did not always confirm the results obtained, thus highlighting the limits of API 20NE. Instead RFLP ITS1 and the sequencing of 16S rRNA gene grouped the isolates into 6 clusters: Pseudomonas fluorescens (cluster I), Pseudomonas fragi (cluster II and V) Pseudomonas migulae (cluster III), Pseudomonas aeruginosa (cluster IV) and Pseudomonas chicorii (cluster VI). The pectinolytic activity was typical of species isolated from vegetable products, especially Pseudomonas fluorescens. Instead Pseudomonas fragi, predominantly isolated from meat was characterised by proteolytic and lipolytic activities.
The aim of this work was to evaluate the effects of wheat germ -stabilized by toasting or by sourdough fermentation -on dough and bread properties. Doughs were produced by adding increasing amounts of each type of stabilized germ, starting with the current recommended level of 3g/100g up to 20g/100g. Sourdough fermentation ensured the presence of lactic acid bacteria (LAB) in amounts comparable to those found in conventional sourdough. The acidification induced by LAB inactivates lipase and lipoxygenase, as does the toasting process. These results decreased the phenomena of rancidity, as demonstrated by the low development of hexanal during storage. Fermentation significantly decreased the content of glutathione, responsible for the deterioration of the rheological characteristics and workability of dough containing high levels of germ. Dough enriched with fermented germ exhibited high stability during mixing and development. Positive effects associated with the use in bread-making of germ stabilized by fermentation have been detected both in fresh bread (high specific volume) and in bread samples stored up to 4 days in controlled conditions of humidity and temperature. Finally, the sensory consumers' test confirmed that the addition of fermented germ did not diminish the liking of the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.