BackgroundGender distribution varies across neurodegenerative disorders, with, traditionally, a higher female frequency reported in Alzheimer’s disease (AD) and a higher male frequency in Parkinson’s disease (PD). Conflicting results on gender distribution are reported concerning dementia with Lewy bodies (DLB), usually considered as an intermediate disease between AD and PD. The aim of the present study was to investigate gender differences in DLB in French specialized memory settings using data from the French national database spanning from 2010 to 2015 and to compare sex ratio in DLB with that in AD, Parkinson’s disease dementia (PDD), and PD. Our hypothesis was that there is a balanced sex ratio in DLB, different from that found in AD and PD.MethodsWe conducted a repeated cross-sectional study. The study population comprised individuals with a DLB, AD, PDD, or PD diagnosis according to the International Classification of Diseases, Tenth Revision, in the French National Alzheimer Database between 2010 and 2015. Sex ratio and demographic data were compared using multinomial logistic regression and a Bayesian statistical model.ResultsFrom 2010 to 2015 in French specialized memory settings, sex ratios (female percent/male percent) were found as follows: 1.21 (54.7%/45.3%) for DLB (n = 10,309), 2.34 (70.1%/29.9%) for AD (n = 135,664), 0.76 (43.1%/56.9%) for PD (n = 8744), and 0.83 (45.4%/54.6%) for PDD (n = 3198). Significant differences were found between each group, but not between PDD and PD, which had a similar sex ratio.ConclusionsThis large-sample prevalence study confirms the balanced gender distribution in the DLB population compared with AD and PD-PDD. Gender distribution and general demographic characteristics differed between DLB and PDD. This is consistent with the hypothesis that DLB is a distinct disease with characteristics intermediate between AD and PD, as well as with the hypothesis that DLB could have at least partially distinct neuropathological correlates.
ObjectivesWe hypothesized that measures of cortical thickness and volume in language areas would correlate with response to treatment with high-definition transcranial direct current stimulation (HD-tDCS) in persons with primary progressive aphasia (PPA).Materials and MethodsIn a blinded, within-group crossover study, PPA patients (N = 12) underwent a 2-week intervention HD-tDCS paired with constraint-induced language therapy (CILT). Multi-level linear regression (backward-fitted models) were performed to assess cortical measures as predictors of tDCS-induced naming improvements, measured by the Western Aphasia Battery-naming subtest, from baseline to immediately after and 6 weeks post-intervention.ResultsGreater baseline thickness of the pars opercularis significantly predicted naming gains (p = 0.03) immediately following intervention, while greater thickness of the middle temporal gyrus (MTG) and lower thickness of the superior temporal gyrus (STG) significantly predicted 6-week naming gains (p’s < 0.02). Thickness did not predict naming gains in sham. Volume did not predict immediate gains for active stimulation. Greater volume of the pars triangularis and MTG, but lower STG volume significantly predicted 6-week naming gains in active stimulation. Greater pars orbitalis and MTG volume, and lower STG volume predicted immediate naming gains in sham (p’s < 0.05). Volume did not predict 6-week naming gains in sham.ConclusionCortical thickness and volume were predictive of tDCS-induced naming improvement in PPA patients. The finding that frontal thickness predicted immediate active tDCS-induced naming gains while temporal areas predicted naming changes at 6-week suggests that a broader network of regions may be important for long-term maintenance of treatment gains. The finding that volume predicted immediate naming performance in the sham condition may reflect the benefits of behavioral speech language therapy and neural correlates of its short-lived treatment gains. Collectively, thickness and volume were predictive of treatment gains in the active condition but not sham, suggesting that pairing HD-tDCS with CILT may be important for maintaining treatment effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.