This study aimed to investigate genotype and phenotype in males affected with X-linked hypohidrotic ectodermal dysplasia (HED) and in female carriers, to analyse a possible genotype-phenotype correlation, and to analyse a possible relation between severity of the symptoms and the X-chromosome inactivation pattern in female carriers. The study group comprised 67 patients from 19 families (24 affected males and 43 female carriers). All participants had clinical signs of ectodermal dysplasia and a disease-causing EDA mutation. The EDA gene was screened for mutations by single-stranded conformational polymorphism and direct sequencing. Multiplex ligation-dependent probe amplification (MLPA) analysis was used to detect deletions/duplications in female probands. Sixteen different EDA mutations were detected in the 19 families, nine not described previously. The MLPA analysis detected a deletion of exon 1 in one female proband. No genotype-phenotype correlations were observed, and female carriers did not exhibit a skewed X-chromosome inactivation pattern. However, in two female carriers with pronounced clinical symptoms, in whom the parental origin of each allele was known, we observed that mainly the normal allele was inactivated.
The purpose of this study was to evaluate the potential ability of magnetic resonance imaging (MRI) for evaluation of myocardial iron deposits. The applied MRI technique has earlier been validated for quantitative determination of the liver iron concentration. The method involves cardiac gating and may, therefore, also be used for simultaneous evaluation of myocardial iron. The tissue signal intensities were measured from spin echo images and the myocardium/muscle signal intensity ratio was determined. The SI ratio was converted to tissue iron concentration values based on a modified calibration curve from the liver model. The crucial steps of the method were optimized; i.e. recognition and selection of the myocardial slice for analysis and positioning of the regions of interest (ROIs) within the myocardium and the skeletal muscle. This made the myocardial MRI measurements sufficiently reproducible. We applied this method in 41 multiply transfused patients. Our data demonstrate significant positive linear relationships between different iron store parameters and the MRI-derived myocardial iron concentration, which was significantly related to the serum ferritin concentration (rho=0.62, P<0.0001) and to the MRI-determined liver iron concentration (rho=0.36, P=0.02). The myocardial MRI iron concentrations demonstrated also a significant positive correlation with the number of blood units given (rho=0.45, P=0.005) and the aminotransferase serum concentration (rho=0.54, P=0.0008). Our data represents indirect evidence for the ability of MRI techniques based on myocardium/muscle signal intensity ratio measurements to evaluate myocardial iron overload.
We designed oligonucleotide primer pairs to amplify the promoter region, the translated exon sequences, and the flanking intron sequences of all 18 exons of the LDL receptor gene to compare the ability of the PCR single-strand conformation polymorphism (PCR-SSCP) method with semiautomated solid-phase genomic DNA sequencing to detect sequence variations. In 20 apparently unrelated Danish patients with a clinical diagnosis of heterozygous familial hypercholesterolemia (FH), we identified 13 different mutations in the LDL receptor gene: two silent (C331C, N494 N); five missense (W66G, E119K, T383P, W556S, T7051); one nonsense (W23X); three splice-site (313 + 1G-->A, 1061-8T-->C, 1846-1G-->A); and two frameshift (335del10, 1650delG) mutations. Four of these mutations, N494 N, T383P, 1061-8T-->C, and W556S, have not been reported earlier. The pathogenicity of the T383P, 1061-8T-->C, and W556S mutations remains to be established by in vitro mutagenesis and transfection studies. One patient had three mutations (335del10, 1061-8T-->C, and T705I) on the same allele. Further, nine well-known polymorphisms were detectable with this methodological setup. Direct DNA sequencing of the PCR products used for the SSCP analysis did not reveal any sequence variations not detected by the PCR-SSCP method. In two patients we did not detect any mutation by either method. We conclude that the PCR-SSCP analysis, performed as described here, is as sensitive and efficient as DNA sequencing in the ability to identify the sequence variations in the LDL receptor gene of the patients with heterozygous FH of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.