In this paper we investigated the thermal behaviour of an assembly of multi scale cylinders in a staggered counterrotating configuration cooled by natural convection with the objective of maximizing the heat transfer density rate (heat transfer rate per unit volume). A numerical model was used to solve the governing equations that describe the temperature and flow fields and a mathematical optimisation algorithm was used to find the optimal structure for flow configurations with two degrees of freedom. The multi scale structure of the cylinder assembly was optimized for each flow regime (Rayleigh number) and cylinder rotation speed for two degrees of freedom. Smaller cylinders were placed at the entrance to the assembly, in the wedge-shaped flow regions occupied by fluid that had not yet been used for heat transfer, to create additional length scales to the flow configuration.It was found that there was almost no effect of cylinder rotation on the maximum heat transfer density rate, when compared to stationary cylinders, at each Rayleigh number; with the exception of high cylinder rotation speeds, which served to suppress the heat transfer density rate. It was, however, found that the optimized spacing decreased as the cylinder rotation speed was increased at each Rayleigh number. Results further show that the maximum heat transfer density rate for a multi scale configuration (without cylinder rotation) was higher than a single scale configuration (with rotating cylinders) with an exception at very low Rayleigh numbers.
In this paper we investigate the thermal behaviour of an assembly of consecutive cylinders in a counter-rotating configuration cooled by natural convection with the objective of maximizing the heat transfer density rate (heat transfer rate per unit volume). A numerical model is used to solve the governing equations that describe the temperature and flow fields. The spacing between the consecutive cylinders is optimised for each flow regime (Rayleigh number) and cylinder rotation speed. It was found that the optimized spacing decreases as the Rayleigh number increases and the heat transfer density rate increases, for the optimized structure, as the cylinder rotation speed is increased. Results further shows that there is an increase in the heat transfer density rate of the rotating cylinders over stationary cylinders.
In this paper the two dimensional numerical topology optimization of a high conductive conduit material, distributed within a heat-generating material, is investigated with regards to the effect of orthotropic materials. Specifically, materials with orthotropic thermal conductivities (different primary and secondary principal thermal conductivities).
Uranium and thorium oxides have critical roles as fuels in existing nuclear power plants, as well as in proposed reactor concepts. The thermal conductivity of these materials determines their ability to transfer heat from the reactor core to the surrounding coolant. Additionally, these actinide compounds are of interest in condensed matter physics because of the 5f orbitals and unique electron interaction, coupling, and scattering events that can occur. Because of the radioactivity of thorium and uranium, thin film measurements of actinide materials are used to limit the amount of operator exposure, but standard thermal characterization methods are not well suited for thin films. This paper presents the process of depositing thin film UOx and ThOx samples of nm-μm thicknesses and the results of thermal property measurements. Thin films were deposited on silicon and glass substrates via dc-magnetron sputtering using an argon/oxygen mixture as the working gas. The thermal properties of the films were measured by the Thermal Conductivity Microscope (TCM). This uses one laser to generate thermal waves and a second laser to measure the magnitude and phases of the thermal waves to obtain the conductivity of materials. The results of the research show that the UOx film properties are lower than bulk values and that the role of the substrate has a considerable effect on determining the measured properties. Future work aims at improving the deposition process. Epitaxial film growth is planned. Additional understanding of thermal property measurements is targeted.
Un ni iv ve er rs si it ty y o of f P Pr re et to or ri ia a i Abstract Title: Geometric optimization for the maximum heat transfer density rate from cylinders rotating in natural convection Author:LG Page Supervisors: Prof T Bello-Ochende and Prof JP Meyer Department: Mechanical and Aeronautical Engineering University:University of Pretoria Degree:Masters in Engineering (Mechanical Engineering)In this study we investigates the thermal behaviour of an assembly of consecutive cylinders in a counter-rotating configuration cooled by natural convection with the objective of maximizing the heat transfer density rate (heat transfer rate per unit volume). A numerical model was used to solve the governing equations that describe the temperature and flow fields and an optimisation algorithm was used to find the optimal structure for flow configurations with two or more degrees of freedom. The geometric structure of the consecutive cylinders was optimized for each flow regime (Rayleigh number) and cylinder rotation speed for one and two degrees of freedom. Smaller cylinders were placed at the entrance to the assembly, in the wedge-shaped flow regions occupied by fluid that had not yet been used for heat transfer, to create additional length scales to the flow configuration.It was found that the optimized spacing decreases and the heat transfer density rate increases as the Rayleigh number increases, for the optimized structure. It was also found that the optimized spacing decreases and the maximum heat transfer density rate increases, as the cylinder rotation speed was increased for the single scale configuration at each Rayleigh number. Results further showed that there was an increase in the heat transfer density rate of the rotating cylinders over stationary cylinders for a single scale configuration.For a multi scale configuration it was found that there was almost no effect of cylinder rotation on the maximum heat transfer density rate, when compared to stationary cylinders, at each Rayleigh number; with the exception of high cylinder rotation speeds, which serve to suppress the heat transfer density rate. It was, however, found that the optimized spacing decreases as the cylinder rotation speed was increased at each Page iii Rayleigh number. Results further showed that the maximum heat transfer density rate for a multi scale configuration (with stationary cylinders) was higher than a single scale configuration (with rotating cylinders) with an exception at very low Rayleigh numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.