Localized coherent structures can form in externally-driven dispersive optical cavities with a Kerr-type nonlinearity. Such systems are described by the Lugiato-Lefever equation, which supports a large variety of dynamical solutions. Here, we review our current knowledge on the formation, stability and bifurcation structure of localized structures in the one-dimensional Lugiato-Lefever equation. We do so by focusing on two main regimes of operation: anomalous and normal second-order dispersion. In the anomalous regime, localized patterns are organized in a homoclinic snaking scenario, which is eventually destroyed, leading to a foliated snaking bifurcation structure. In the normal regime, however, localized structures undergo a different type of bifurcation structure, known as collapsed snaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.