Although cell-based therapies show potential antiarrhythmic effects that could be mediated by their paracrine action, the mechanisms and the extent of these effects were not deeply explored. We investigated the antiarrhythmic mechanisms of extracellular vesicles secreted by cardiosphere-derived cell extracellular vesicles (CDC-EVs) on the electrophysiological properties and gene expression profile of HL1 cardiomyocytes. HL-1 cultures were primed with CDC-EVs or serum-free medium alone for 48 h, followed by optical mapping and gene expression analysis. In optical mapping recordings, CDC-EVs reduced the activation complexity of the cardiomyocytes by 40%, increased rotor meandering, and reduced rotor curvature, as well as induced an 80% increase in conduction velocity. HL-1 cells primed with CDC-EVs presented higher expression of SCN5A, CACNA1C, and GJA1, coding for proteins involved in INa, ICaL, and Cx43, respectively. Our results suggest that CDC-EVs reduce activation complexity by increasing conduction velocity and modifying rotor dynamics, which could be driven by an increase in expression of SCN5A and CACNA1C genes, respectively. Our results provide new insights into the antiarrhythmic mechanisms of cell therapies, which should be further validated using other models.
Biological treatments are one of the medical breakthroughs in the twenty-first century. The initial enthusiasm pushed the field towards indiscriminatory use of cell therapy regardless of the pathophysiological particularities of underlying conditions. In the reparative and regenerative cardiovascular field, the results of the over two decades of research in cell-based therapies, although promising still could not be translated into clinical scenario. Now, when we identified possible deficiencies and try to rebuild its foundations rigorously on scientific evidence, development of potency assays for the potential therapeutic product is one of the steps which will bring our goal of clinical translation closer. Although, highly challenging, the potency tests for cell products are considered as a priority by the regulatory agencies. In this paper we describe the main characteristics and challenges for a cell therapy potency test focusing on the cardiovascular field. Moreover, we discuss different steps and types of assays that should be taken into consideration for an eventual potency test development by tying together two fundamental concepts: target disease and expected mechanism of action.
Graphical Abstract
Development of potency assays for cell-based products consists in understanding the pathophysiology of the disease, identifying potential mechanisms of action (MoA) to counteract it and finding the most suitable cell-based product that exhibits these MoA. When applied, the potency assay needs to correlate bioactivity of the product, via a measurement related to the MoA, with treatment efficacy. However, in the cardiovascular field, the process faces several challenges and high requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.