Recent models support the view that the Pyrenees were formed after the inversion of a previously highly extended continental crust that included exhumed upper mantle rocks. Mantle rocks remain near to the surface after compression and mountain building, covered by the latest Cretaceous to Paleogene sequences. 3‐D lithospheric‐scale gravity inversion demands the presence of a high‐density mantle body placed within the crust in order to justify the observed anomalies. Exhumed mantle, having ~50 km of maximum width, continuously extends beneath the Basque‐Cantabrian Basin and along the northern side of the Pyrenees. The association of this body with rift, postrift, and inversion structural geometries is tested in a balanced cross section across the Basque‐Cantabrian Basin that incorporates a major south‐dipping ramp‐flat‐ramp extensional detachment active between Valanginian and early Cenomanian times. Results indicate that horizontal extension progressed ~48 km at variable strain rates that increased from 1 to ~4 mm/yr in middle Albian times. Low‐strength Triassic Keuper evaporites and mudstones above the basement favor the decoupling of the cover with formation of minibasins, expulsion rollovers, and diapirs. The inversion of the extensional system is accommodated by doubly verging basement thrusts due to the reactivation of the former basin bounding faults in Eocene‐Oligocene times. Total shortening is estimated in ~34 km and produced the partial subduction of the continental lithosphere beneath the two sides of the exhumed mantle. Obtained results help to pinpoint the original architecture of the North Iberian Margin and the evolution of the hyperextended aborted intracontinental basins.
This chapter aims to identify, characterize and locate the main facts/events related to orogenesis in the Iberian Peninsula. Its succession in space and time determines the geodynamic environment of the broader geological phenomenon corresponding to the Variscan cycle. In this sense, this section comprises two parts: I-The Iberian orogenic magmatism seen through a space-time approach of its westernmost region-focus on the enormous complexity of the inherited basement, its nature, age and distribution in space. Establishes a space-time sequence of geodynamic environments correlated with the obtained data and tries to identify the agents responsible for its genesis. Some case studies are presented to illustrated significant regional aspects of the magmatic process and II-An overview of the petrogenesis of the great batholiths and of the basic, intermediate and mantle-related rocks-identify and analyze a great amount of these rocks intruding and extruded from 400 to 280 Ma and to better understanding the largescale process involving the whole lithosphere during Variscan cycle.
Key Points
A continuous high‐density body is regarded as exhumed mantle rocks beneath the Basque‐Cantabrian Basin extending along the Northern Pyrenees
Pedreira et al. () doubts our 3‐D gravity model, the view of the high‐density body as exhumed mantle, and the proposed geodynamic model
We defend point by point our model that offers important keys to understand the extension and inversion of the North Iberian Margin
The Nisa-Alburquerque granitic batholith (southern Variscan Belt, Iberian Peninsula) has been studied by petrological, structural and geophysical approaches, obtaining contrasting models for its deep structure and emplacement sequence. In order to test these models and gain knowledge on the thermal increase induced by the intrusion, we have studied its contact aureole, which was developed in similar country rock lithologies (mica schists alternating with metasandstones and feldespatic schists) all along the northern external contact of the batholith. Our results indicate no change in metamorphic grade and some variations in aureole width, which narrows toward the western sectors of the batholith. Cordierite is the only contact metamorphic mineral developed together with a high temperature biotite probably related to the granite thermal input. By considering these new data, together with zircon saturation temperatures within the granite and previous petrological and geophysical studies, we propose a model in which the feeder zones of the granitic magmas were an eastern main one and a western secondary one. We have also made comparisons of the metamorphic grade in the country rocks and the xenoliths within the granite. Most of the xenoliths have the same metamorphic facies as the country rocks (Crd-zone), though some of them contain slightly different assemblages (And ? Crd), which could be explained in different ways: (1) differences in the primary schist compositions, (2) increased time-span of xenoliths in contact with the melt and (3) xenolith incorporation at slightly higher depths during final granite ascent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.