Background:1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene (p,p′-DDT) is a persistent environmental endocrine disruptor (ED). Several studies have shown an association between p,p′-DDT exposure and reproductive abnormalities.Objectives:To investigate the putative effects of p,p′-DDT on the human follitropin receptor (FSHR) function.Methodsand Results: We used Chinese hamster ovary (CHO) cells stably expressing human FSHR to investigate the impact of p,p′-DDT on FSHR activity and its interaction with the receptor. At a concentration of 5 μM p,p′-DDT increased the maximum response of the FSHR to follitropin by 32 ± 7.45%. However, 5 μM p,p′-DDT decreased the basal activity and did not influence the maximal response of the closely related LH/hCG receptor to human chorionic gonadotropin (hCG). The potentiating effect of p,p′-DDT was specific for the FSHR. Moreover, in cells that did not express FSHR, p,p′-DDT had no effect on cAMP response. Thus, the potentiating effect of p,p′-DDT was dependent on the FSHR. In addition, p,p′-DDT increased the sensitivity of FSHR to hCG and to a low molecular weight agonist of the FSHR, 3-((5methyl)-2-(4-benzyloxy-phenyl)-5-{[2-[3-ethoxy-4-methoxy-phenyl)-ethylcarbamoyl]-methyl}-4-oxo-thiazolidin-3-yl)-benzamide (16a). Basal activity in response to p,p′-DDT and potentiation of the FSHR response to FSH by p,p′-DDT varied among FSHR mutants with altered transmembrane domains (TMDs), consistent with an effect of p,p′-DDT via TMD binding. This finding was corroborated by the results of simultaneously docking p,p′-DDT and 16a into the FSHR transmembrane bundle.Conclusion:p,p′-DDT acted as a positive allosteric modulator of the FSHR in our experimental model. These findings suggest that G protein–coupled receptors are additional targets of endocrine disruptors.Citation:Munier M, Grouleff J, Gourdin L, Fauchard M, Chantreau V, Henrion D, Coutant R, Schiøtt B, Chabbert M, Rodien P. 2016. In vitro effects of the endocrine disruptor p,p′-DDT on human follitropin receptor. Environ Health Perspect 124:991–999; http://dx.doi.org/10.1289/ehp.1510006
The thyrotropin receptor (TSHR) is a G protein-coupled receptor (GPCR) that is member of the leucine-rich repeat subfamily (LGR). In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM) 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.