The role of the pedestal position on the pedestal performance has been investigated in AUG, JET-ILW and TCV. When the pedestal is peeling-ballooning (PB) limited, the three machines show a similar behaviour. The outward shift of the pedestal density leads to the outward shift of the pedestal pressure which, in turns, reduces the PB stability, degrades the pedestal confinement and reduces the pedestal width. Once the experimental density position is considered, the EPED model is able to correctly predict the pedestal height. An estimate of the impact of the density position on a ITER baseline scenario shows that the maximum reduction in the pedestal height is 10% while the reduction in the fusion power is between 10% and 40% depending on the assumptions for the core transport model used.When the pedestal is not PB limited, a different behaviour is observed. The outward shift of the density is still empirically correlated with the pedestal degradation but no change in the pressure position is observed and the PB model is not able to correctly predict the pedestal height. On the other hand, the outward shift of the density leads to a significant increase of η e (where η e is the ratio of density to temperature scale lengths, η e = L ne /L Te ) which leads to the increase of the growth rate of microinstabilities (mainly ETG and ITG) by 50%. This suggests that, when the pedestal is not PB limited, the increase in the turbulent transport due to the outward shift of the density might play an important role in the decrease of the pedestal performance.
Properties of the I-mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L-I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I-mode pedestal is peeling-ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes (k ⊥ ≈ 5 -12 cm −1 , with k ⊥ the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X-point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.
Abstract.The lithium beam emission spectroscopy (Li-BES) is a powerful diagnostic to resolve the plasma edge density with high temporal and spatial resolution. The recent upgrades of the Li-BES at ASDEX Upgrade and the resulting gain in photon flux allow the plasma edge density to be determined with an advanced level of accuracy. Furthermore, electron density fluctuations are measured using Li-BES. The Li-BES capabilities and limitations to measure electron density profiles as well as density fluctuations are presented. Li-BES is well suited to characterize electron density turbulence in the scrape off layer (SOL) with decreasing sensitivity towards the plasma core. This is demonstrated by simulations as well as by comparisons with other diagnostics. Li-BES is an appropriate tool to study transport phenomena in the SOL over a wide range of plasma parameters due to its robustness and routine usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.