ASDEX Upgrade has successfully started the second experimental campaign with a full tungsten coverage of the plasma facing components and without using a boronisation for machine conditioning. The tungsten erosion at all relevant positions in the main chamber and the divertor was investigated. The outer divertor is by far the strongest source region, especially in discharges with high divertor temperature in-between ELMs. In the main chamber, the central column is usually the first limiting structure and produces then larger W erosion fluxes than the outboard limiters. Nevertheless, the tungsten influx from the outboard limiters has a much stronger effect on the tungsten content in the confined plasma. An increase of the available power from the fly-wheel generator allowed for improved H-mode operation at 1 MA, and H factors in the range of 1.2 could be achieved at acceptable W concentrations of about 2¢10 .
A comparison of the L–H power threshold (Pthr) in JET with all carbon, JET-C, and beryllium/tungsten wall (the ITER-like choice), JET-ILW, has been carried out in experiments with slow input power ramps and matched plasma shapes, divertor configuration and IP/BT pairs. The low density dependence of the L–H power threshold, namely an increase below a minimum density ne,min, which was first observed in JET with the MkII-GB divertor and C wall and subsequently not observed with the current MkII-HD geometry, is observed again with JET-ILW. At plasma densities above ne,min, Pthr is reduced by ∼30%, and by ∼40% when the radiation from the bulk plasma is subtracted (Psep), with JET-ILW compared to JET-C. At the L–H transition the electron temperature at the edge, where the pedestal later develops, is also lower with JET-ILW, for a given edge density. With JET-ILW the minimum density is found to increase roughly linearly with magnetic field, , while the power threshold at the minimum density scales as . The H-mode power threshold in JET-ILW is found to be sensitive both to variations in main plasma shape (Psep decreases with increasing lower triangularity and increases with upper triangularity) and in divertor configuration. When the data are recast in terms of Psep and Zeff or subdivertor neutral pressure a linear correlation is found, pointing to a possible role of Zeff and/or subdivertor neutral pressure in the L–H transition physics. Depending on the chosen divertor configuration, Pthr can be up to a factor of two lower than the ITPA scaling law for densities above ne,min. A shallow edge radial electric field well is observed at the L–H transition. The edge impurity ion poloidal velocity remains low, close to its L-mode values, ⩽5 km s−1 ± 2–3 km s−1, at the L–H transition and throughout the H-mode phase, with no measureable increase within the experimental uncertainties. The edge toroidal rotation profile does not contribute to the depth of the negative Er well and thus may not be correlated with the formation of the edge transport barrier in JET.
Access conditions for full suppression of edge localised modes (ELMs) by magnetic perturbations (MP) in low density high confinement mode (H-mode) plasmas are studied in the ASDEX Upgrade tokamak. The main empirical requirements for full ELM suppression in our experiments are: 1. The poloidal spectrum of the MP must be aligned for best plasma response from weakly stable kinkmodes, which amplify the perturbation, 2. The plasma edge density must be below a critical value, 3.3 × 10 19 m −3 . The edge collisionality is in the range ν * i = 0.15−0.42 (ions) and ν * e = 0.15−0.25 (electrons). However, our data does not show that the edge collisionality is the critical parameter that governs access to ELM suppression. 3. The pedestal pressure must be kept sufficiently low to avoid destabilisation of small ELMs. This requirement implies a systematic reduction of pedestal pressure of typically 30% compared to unmitigated ELMy H-mode in otherwise similar plasmas. 4. The edge safety factor q 95 lies within a certain window. Within the range probed so far, q 95 = 3.5−4.2, one such window, q 95 = 3.57−3.95 has been identified. Within the range of plasma rotation encountered so far, no apparent threshold of plasma rotation for ELM suppression is found. This includes cases with large cross field electron flow in the entire pedestal region.
Abstract. After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM induced W source. The restrictions of plasma operation in the unboronized W machine occured predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles ( 10 MW/m 2 ), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison to Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction, but also in improved energy confinement, as well as in smaller ELMs.
The W-transport in the core plasma of JET is investigated experimentally by deriving the W-concentration profiles from the modelling of the signals of the soft x-ray cameras. For the case of pure neutral beam heating W accumulates in the core (r/a < 0.3) approaching W-concentrations of 10 −3 in between the sawtooth crashes, which flatten the W-profile to a concentration of about 3 × 10 −5 . When central Ion cyclotron resonant heating is additionally applied the core W-concentration decays in phases that exhibit a changed mode activity, while also the electron temperature increases and the density profile becomes less peaked. The immediate correlation between the change of magnetohydrodymanic (MHD) and the removal of W from the plasma core supports the hypothesis that the change of the MHD activity is the underlying cause for the change of transport. Furthermore, a discharge from the ASDEX Upgrade is investigated. In this case the plasma profiles exhibit small changes only, while the most prominent change occurs in the W-content of the confined plasma caused by the reduction of the fuelling deuterium gas puff. Concomintantly, the W-concentration profiles in the core plasma r/a < 0.2 steepen up reminescent to the well-known connection between central radiation and transport during cases with strong, established W-accumulation, while in the present analysis such a causality between the two during the onset of W-accumulation could not be pinned down. Both case studies exemplify that small changes of the core parameters of a plasma my influence the W-transport in the plasma core drastically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.