Abstract. We present a unifying model of plateau-to-plateau transitions in the quantum Hall effect based on results from high resolution frequency scaling experiments. We show that as the frequency or quantum coherence length of the two-dimensional electron system is varied, one observes a crossover between classical percolation and quantum percolation in the measured values of the critical scaling exponents of the plateau-to-plateau transitions. This crossover is dependent on the relationship between certain relevant length scales of a twodimensional system and can be explained using a quantum percolation model. The model explains why quantum criticality can be observed in some systems, but is absent from others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.