Previous research has shown that the brown seaweed Ascophyllum nodosum (ASCO) has antimicrobial and antioxidant properties and also increases milk I concentration. We aimed to investigate the effects of supplementing ASCO meal or monensin (MON) on ruminal fermentation, diversity and relative abundance of ruminal bacterial taxa, metabolism of I and As, and blood concentrations of thyroid hormones, antioxidant enzymes, and cortisol in lactating dairy cows. Five multiparous ruminally cannulated Jersey cows averaging (mean ± standard deviation) 102 ± 15 d in milk and 450 ± 33 kg of body weight at the beginning of the study were used in a Latin square design with 28-d periods (21 d for diet adaptation and 7 d for data and sample collection). Cows were fed ad libitum a basal diet containing (dry matter basis) 65% forage as haylage and corn silage and 35% concentrate and were randomly assigned to 1 of the following 5 dietary treatments: 0, 57, 113, or 170 g/d of ASCO meal, or 300 mg/d of MON. Supplements were placed directly into the rumen once daily after the morning feeding. Diets had no effect on ruminal pH and NH 3 -N concentration, which averaged 6.02 and 6.86 mg/ dL, respectively. Total volatile fatty acid concentration decreased linearly in cows fed incremental amounts of ASCO meal. Supplementation with ASCO meal did not change the ruminal molar proportions of volatile fatty acids apart from butyrate, which responded quadratically with the lowest values observed at 56 and 113 g/d of ASCO supplementation. Compared with the control diet or diets containing ASCO meal, cows fed MON showed greater molar proportion of propionate. Diets did not affect the α diversity indices Shannon, Simpson, and Fisher for ruminal bacteria. However, feeding incremental levels of ASCO meal linearly decreased the relative abundance of Tenericutes in ruminal fluid. Monensin increased the relative abundance of the CAG: 352 bacterial genus in ruminal fluid compared with the control diet. Linear increases in response to ASCO meal supplementation were observed for the concentrations and output of I in serum, milk, urine, and feces. Fecal excretion of As increased linearly in cows fed varying amounts of ASCO meal, but ASCO did not affect the concentration and secretion of As in milk. The plasma activities of the antioxidant enzymes and the serum concentrations of thyroid hormones did not change. In contrast, circulating cortisol decreased linearly in diets containing ASCO meal. The apparent total-tract digestibilities of dry matter, organic matter, and crude protein increased linearly with ASCO meal, but those of neutral and acid detergent fiber were not affected. In summary, feeding incremental amounts of ASCO meal decreased serum cortisol concentration, and increased I concentrations and output in serum, milk, feces, and urine.
We evaluated the effects of incremental amounts of ground flaxseed (GFX) on diversity and relative abundance of ruminal microbiota taxa, enteric methane (CH4) emissions, and urinary excretion of purine derivatives in lactating dairy cows in a replicated 4 × 4 Latin square design. Twenty mid-lactation Jersey cows were used in the study. Of these 20 cows, 12 were used for ruminal sampling, 16 for enteric CH4 measurements, and all for spot urine collection. Each period lasted 21 d with 14 d for diet adaptation and 7 d for data and sample collection. Diets were formulated by replacing corn meal and soybean meal with 0, 5, 10, and 15% of GFX in the diet dry matter. Ruminal fluid samples obtained via stomach tubing were used for DNA extraction. Enteric CH4 production was measured using the sulfur hexafluoride tracer technique. Diets had no effect on ruminal microbiota diversity. Similarly, the relative abundance of ruminal archaea genera was not affected by diets. In contrast, GFX decreased or increased linearly the relative abundance of Firmicutes (P < 0.01) and Bacteroidetes (P < 0.01), respectively. The relative abundance of the ruminal bacteria Ruminococcus (P < 0.01) and Clostridium (P < 0.01) decreased linearly, and that of Prevotella (P < 0.01) and Pseudobutyrivibrio (P < 0.01) increased linearly with feeding GFX. A tendency for a linear reduction (P = 0.055) on enteric CH4 production (from 304 to 256 g/d) was observed in cows fed increasing amounts of GFX. However, neither CH4 yield nor CH4 intensity was affected by treatments. Diets had no effect in the urinary excretion of uric acid, allantoin, and total purine derivatives. Overall, feeding GFX decreased linearly the relative abundance of ruminal bacterial genera involved in fiber degradation (i.e., Ruminococcus, Clostridium) and enteric CH4 production, but no change was seen for CH4 yield and CH4 intensity or urinary excretion of total purine derivatives, suggesting no detrimental effect of GFX on microbial protein synthesis in the rumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.