A carbon fibre post system, three non-palladium and one palladium metal post systems, two ceramic post systems, and a metal post system with a ceramic core were studied in vitro. The control group consisted of root-filled test teeth without posts. The test teeth were identical artificial roots of an upper central incisor made from a posterior composite whose module of elasticity was similar to that of natural dentine. All posts were cemented in the roots using Panavia 21 TC. Subsequently, standardized full crowns were cemented onto all roots. On a universal testing machine, the test teeth were loaded palatally at monotonously increasing loads until root fracture. The highest mean fracture loads were found for the carbon fibre post system (312.5 +/- 58.8 N). The fracture load of non-palladium metal posts (242.3-300.4 N) did not differ significantly from that of the Perma-dor post (265.9 N), which does contain palladium. Values of 300.3 +/- 89.3 N (aluminium oxide ceramics) and 193.5 +/-57.0 N (zirconia ceramics) were found for the ceramic posts. The control group exhibited a fracture load of 228.8 +/- 35.7 N. The mean distance between the vestibular end of the fracture gap and the point of force application was between 10.1 +/- 2.3 and 14.7 +/- 1.2 mm.
Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm2.
Removable dentures supported by cast-metal telescopic crowns often exhibit an unpredictable increase or decrease in retentive force after being in clinical use for some time. The objective of the present in vitro study was to develop a new retainer for removable dentures and to evaluate its tribological properties. The new retainer is based on a tapered crown design and consists of a conical all-ceramic abutment crown and a coping made of electroplated gold. It was compared with conventional telescopic retainers made of cast metal. There were 30 specimens in groups of equal size by material used (abutment crown/coping): Group 1, gold/gold; Group 2, titanium/titanium; Group 3, ceramic/electroplated gold. Each specimen consisted of 2 conical-shaped abutment crowns (alpha =4 degrees; h = 6 mm; O(base) = 4,5 mm); their copings were rigidly connected at 25 mm intervals. Retentive forces were measured with a universal testing machine following axial loading to 5-400 N. Wear was simulated by 500-100, 000 joining and separating cycles in the presence of artificial saliva. Metallographic cross-sections were made to evaluate the specimens' fit and surfaces with an SEM. Retentive forces in Groups 1 and 2 increased with load, exhibiting nondirectional changes after induced wear. Sometimes the alloys' functional surfaces showed considerable tracks of wear. Neither load nor wear had any effect on Group 3 retentive forces (mean(force) = 5.03 N). The functional ceramic and gold surfaces showed no traces of wear and the best fit (median(gap) = 4.9 microm). Replacing cast metals by ceramics and electroplated gold results in retainers with clinically advantageous tribological effects, implying, in particular, high wear resistance.
Optoelectronic signal processing offers great potential for generation and detection of ultra-broadband waveforms in the THz range, so-called T-waves. However, fabrication of the underlying high-speed photodiodes and photoconductors still relies on complex processes using dedicated III-V semiconductor substrates. This severely limits the application potential of current T-wave transmitters and receivers, in particular when it comes to highly integrated systems that combine photonic signal processing with optoelectronic conversion to THz frequencies. In this paper, we demonstrate that these limitations can be overcome by plasmonic internal photoemission detectors (PIPED). PIPED can be realized on the silicon photonic platform and hence allow to leverage the enormous opportunities of the associated device portfolio. In our experiments, we demonstrate both T-wave signal generation and coherent detection at frequencies of up to 1 THz. To proof the viability of our concept, we monolithically integrate a PIPED transmitter and a PIPED receiver on a common silicon photonic chip and use them for measuring the complex transfer impedance of an integrated T-wave device.Terahertz signals (T-waves) offer promising perspectives for a wide variety of applications, comprising high-speed communications 1-3 , microwave photonics 4 , spectroscopy 5,6 , life sciences 7,8 , as well as industrial metrology 9,10 . Optoelectronic signal processing techniques are particularly attractive both for T-wave generation 1,11,12 and detection [13][14][15] , especially when broadband operation is required. On a conceptual level, optoelectronic T-wave generation relies on mixing of two optical signals oscillating at frequencies and b f in a high-speed photodetector, for which the photocurrent depends on the incident optical power 11 . The photocurrent oscillates with a difference frequency THz Rx,1 U t modulates the device sensitivity. The PIPED photocurrent is then given by the product of the time-variant sensitivity with the time-variant optical power Rx P t .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.