A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in √ s = 8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb −1 . Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first-and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and µ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector.
Studies of the spin, parity and tensor couplings of the Higgs boson in the , and decay processes at the LHC are presented. The investigations are based on of pp collision data collected by the ATLAS experiment at TeV and TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers , is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the and decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.
High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e + e − linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the desired precision. We take here an initial step of testing the SPA scheme by applying the techniques involved to a specific supersymmetry reference point.
Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at √ s = 13 TeV with the ATLAS detectorThe ATLAS collaboration E-mail: atlas.publications@cern.ch Abstract: A search for heavy neutral Higgs bosons and Z bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb −1 from proton-proton collisions at √ s = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to τ + τ − with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for Z bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude tan β > 1.0 for m A = 0.25 TeV and tan β > 42 for m A = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, Z SSM with m Z < 2.42 TeV is excluded at 95% confidence level, while Z NU with m Z < 2.25 TeV is excluded for the non-universal G(221) model that exhibits enhanced couplings to third-generation fermions. 6 Background estimation 10 6.1 Jet background estimate in the τ had τ had channel 10 6.1. The ATLAS collaboration 37-1 - JHEP01(2018)0551 IntroductionThe discovery of a scalar particle [1, 2] at the Large Hadron Collider (LHC) [3] has provided important insight into the mechanism of electroweak symmetry breaking. Experimental studies of the new particle [4][5][6][7][8] demonstrate consistency with the Standard Model (SM) Higgs boson [9][10][11][12][13][14]. However, it remains possible that the discovered particle is part of an extended scalar sector, a scenario that is predicted by a number of theoretical arguments [15,16]. The Minimal Supersymmetric Standard Model (MSSM) [15,17,18] is the simplest extension of the SM that includes supersymmetry. The MSSM requires two Higgs doublets of opposite hypercharge. Assuming that CP symmetry is conserved, this results in one CPodd (A) and two CP-even (h, H) neutral Higgs bosons and two charged Higgs bosons (H ± ). At tree level, the properties of the Higgs sector in the MSSM depend on only two non-SM parameters, which can be chosen to be the mass of the CP-odd Higgs boson, m A , and the ratio of the vacuum expectation values of the two Higgs doublets, tan β. Beyond tree level, a number of additional parameters affect the Higgs sector, the choice of which defines various MSSM benchmark scenarios. In the m mod+ h scenario [19], the top-squark mixing parameter is chosen such that the mass of the lightest CP-even Higgs boson, m h , is close to the measured mass of the Higgs boson that was discovered at the LHC. A different approach is employed in the hMSSM scenario [20,21] in which the measured value of m h can be used, with certain assumptions, to predict the remaining masses and couplings of the MSSM Higgs bosons without explicit reference to the sof...
A search for excited states of the Bc(±) meson is performed using 4.9 fb(-1) of 7 TeV and 19.2 fb(-1) of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decay Bc(±)→J/ψπ(±). The state appears in the m(Bc(±)π(+)π(-))-m(Bc(±))-2m(π(±)) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842±4±5 MeV, where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations for the second S-wave state of the Bc(±) meson, Bc(±)(2S).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.