Recent progress is described in an ongoing collaborative multidisciplinary research project directed towards the purification, structural characterization, chemical modification, and biological evaluation of new potential natural product anticancer agents obtained from a diverse group of organisms, comprising tropical plants, aquatic and terrestrial cyanobacteria, and filamentous fungi. Information is provided on how these organisms are collected and processed. The types of bioassays are indicated in which initial extracts, chromatographic fractions, and purified isolated compounds of these acquisitions are tested. Several promising biologically active lead compounds from each major organism major class investigated are described, and these may be seen to be representative of very wide chemical diversity.
Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5-to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/ norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C 16 -analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C 30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants.
Antimalarial bioassay-guided fractionation of an EtOH extract of the root wood of Cryptocarya rigidifolia (Lauraceae) led to the isolation of the five new 5,6-dihydro-α-pyrones cryptorigidifoliols A–E (1–5) and the six bicyclic tetrahydro-α-pyrone derivatives cryptorigidifoliols F–K (6–11). The structure elucidations of all compounds were made on the basis of the interpretation of spectroscopic data and chemical derivatization, and the relative and absolute configurations were determined by NOESY, electronic circular dichroism (ECD), and 1H NMR analysis of α-methoxyphenylacetyl (MPA) derivatives. The bicyclic tetrahydro-α-pyrone derivatives were identified as products of acid-catalyzed intramolecular Michael addition of the 5,6-dihydro-α-pyrones in the presence of silica gel. A structure–activity relationship study suggested that the presence of an α,β-unsaturated carbonyl moiety is not essential for potent antimalarial activity.
Plants produce various secondary metabolites that offer a potential source of novel insecticides and repellents for the control of mosquito vectors. Plants of the genus Cinnamosma are endemic to, and widely-distributed throughout, the island of Madagascar. The barks of these species are commonly used in traditional medicines for treating a wide range of maladies. The therapeutic nature of the bark is thought to be associated with its enrichment of pungent drimane sesquiterpenes, which elicit antifeedant and toxic effects in some insects. Here we test the hypothesis that a bark extract of Cinnamosma fragrans (CINEX) and its major drimane sesquiterpenes are insecticidal, antifeedant, and repellent to Aedes aegypti, the principal mosquito vector of chikungunya, dengue, yellow fever, and Zika viruses. We demonstrate that CINEX is 1) toxic to larval and adult female mosquitoes, and 2) antifeedant and repellent to adult female mosquitoes. Moreover, we show that cinnamodial (CDIAL), a sesquiterpene dialdehyde isolated from CINEX, duplicates these bioactivities and exhibits similar toxic potency against pyrethroid-susceptible and -resistant strains of Ae. aegypti. Importantly, we show that CDIAL is an agonist of heterologously-expressed mosquito Transient Receptor Potential A1 (TRPA1) channels, and the antifeedant activity of CDIAL is dampened in a TRPA1-deficient strain of Ae. aegypti (TRPA1-/-). Intriguingly, TRPA1-/- mosquitoes do not exhibit toxic resistance to CDIAL. The data indicate that modulation of TRPA1 is required for the sensory detection and avoidance of CDIAL by mosquitoes, but not for inducing the molecule’s toxicity. Our study suggests that CDIAL may serve as a novel chemical platform for the development of natural product-based insecticides and repellents for controlling mosquito vectors.
One new chlorinated xanthone, 6-chloro-3,8-dihydroxy-1-methylxanthone (1), a new 2-bromo-gentisyl alcohol (2), and a mixture of 6-epimers of 6-dehydroxy-6-bromogabosine C (3a and 3b), together with 19 previously identified compounds, epoxydon (4), norlichexanthone (5), 2-chlorogentisyl alcohol (6), hydroxychlorogentisyl quinone (7), 6-dehydroxy-6α-chlorogabosine C (8a), 6-dehydroxy-6β-chlorogabosine C (8b), gentisyl alcohol (9), gentisyl quinone (10), (R,S)-1-phenyl-1,2-ethanediol (11), dehydrodechlorogriseofulvin (12), dechlorogriseofulvin (13), dehydrogriseofulvin (14), griseofulvin (15), ethylene glycol benzoate (16), alternariol (17), griseoxanthone C (18), drimiopsin H (19), griseophenone C (20), and griseophenone B (21), were isolated from cultures of Penicillium concentricum, a fungal endophyte of the liverwort Trichocolea tomentella. The structures of the new compounds (1, 2, 3a, and 3b) were elucidated by interpretation of spectroscopic data including one- and two-dimensional NMR techniques. Among these, compounds 2-4 displayed modest cytotoxicity to the MCF-7 hormone-dependent breast cancer cell line with IC values of 8.4, 9.7, and 5.7 μM, respectively, whereas compound 9 exhibited selective cytotoxicity against the HT-29 colon cancer cell line with an IC value of 6.4 μM. During this study we confirmed that the brominated gentisyl alcohol (2) was formed by chemical conversion of 4 during bromide salt addition to culture media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.