BackgroundIncrease of blood pressure is accompanied by functional and morphological changes in the vascular wall. The presented study explored the effects of curcuma and black pepper compounds on increased blood pressure and remodeling of aorta in the rat model of experimental NO-deficient hypertension.MethodsWistar rats were administered for 6 weeks clear water or L-NAME (40 mg/kg/day) dissolved in water, piperine (20 mg/kg/day), curcumin (100 mg/kg/day) or their combination in corn oil by oral gavage. The systolic blood pressure was measured weekly. Histological slices of thoracic aorta were stained with hematoxylin and eosin, Mallory's phosphotungstic acid hematoxylin (PTAH), orcein, picrosirius red and van Gieson staining and with antibodies against smooth muscle cells actin. Microscopic pictures were digitally processed and morphometrically evaluated.ResultsThe increase of blood pressure caused by L-NAME was partially prevented by piperine and curcumin, but the effect of their combination was less significant. Animals with hypertension had increased wall thickness and cross-sectional area of the aorta, accompanied by relative increase of PTAH positive myofibrils and decrease of elastin, collagen and actin content. Piperine was able to decrease the content of myofibrils and slightly increase actin, while curcumin also prevented elastin decrease. The combination of spices had similar effects on aortic morphology as curcumin itself.ConclusionsAdministration of piperine or curcumin, less their combination, is able to partially prevent the increase of blood pressure caused by chronic L-NAME administration. The spices modify the remodeling of the wall of the aorta induced by hypertension. Our results show that independent administration of curcumin is more effective in preventing negative changes in blood vessel morphology accompanying hypertensive disease.
The aim of this study was to analyze the effect of indapamide and its combination with ACE inhibitor (captopril) and antioxidant (ProvinolsTM) on both myocardial hypertrophy and fibrosis. Wistar rats were treated with L-NAME (40 mg/kg/day, L); L-NAME plus indapamide (1 mg/kg/day), or captopril (10 mg/kg/day), or ProvinolsTM (40 mg/kg/day), or combination of indapamide with captopril, and indapamide with ProvinolsTM for 7 weeks. Blood pressure (BP), LV hypertrophy and fibrosis were determined. The content of collagens type I and III was evaluated morphometrically after picrosirius red staining. L-NAME treatment led to increased BP, LV hypertrophy, total fibrosis and relative content of collagens without the change in collagen type I/III ratio. Indapamide and captopril decreased BP, LV hypertrophy and the collagen ratio without affecting total fibrosis, while ProvinolsTM reduced BP, the collagen ratio and fibrosis without affecting LV hypertrophy. The combinations decreased all the parameters. Decrease of LV hypertrophy was achieved by drugs with the best reducing effect on BP, fibrosis reduction was reached by the antioxidant treatment with only partial effect on BP. Thus, the combination of antihypertensive and antioxidant treatment may represent a powerful tool in preventing myocardial remodeling induced by hypertension.
The present study evaluates antihyperglycemic activity of fractionated Pycnogenol® and its ability to improve endothelial dysfunction in diabetic animals. The aim of this study was to isolate from Pycnogenol® mixture its active compounds and compare their efficacy on observed parameters. Pycnogenol® mixture was fractioned by re-extracting with petroleum ether, chloroform, ethyl acetate and butanol, subsequently. Pycnogenol® mixture and fractions (butanolic, water, ethyl acetate) were administered during 6 weeks to diabetic rats. Blood glucose levels were assessed from the arterio-venous blood at the beginning of experiment and at the end of experiment. Endothelial dysfunction was evaluated as the contractile responses to phenylephrine and acetylcholine. The amount of collagen I and III was assessed from thoracic aorta after picrosirius red staining. For the confirmation of the changes on molecular level, we determinated endothelial NO synthase (eNOS) and heat shock protein 90 (Hsp90) expression from left ventricle. Overall, the result suggest, that fractions are not so effective on observed parameters as Pycnogenol® mixture itself, indicating synergistic effect of the plant constituents.
Increased amount of collagen type I and decreased amount of type III is described in various pathological processes in the vascular wall. Polyphenols were shown to have protective effect on endothelium, decrease blood pressure and prevent oxidative damage induced by various stimuli. Tetrachlormethane (CCl4) is a toxic substance with known negative systemic effects induced by free radicals. Chronic administration of CCl4 for 12 weeks led to an increase of collagen type I and a decrease of type III in the wall of aorta. Parallel administration of red wine polyphenols significantly reduced the increase of collagen type I, at the same time the content of type III rose to the level above controls. After 4 weeks of spontaneous recovery no changes were observed. If polyphenols were administered during the recovery period, there was a decrease of type I and an increase of type III collagen content in the aorta. It can be concluded that polyphenols have a tendency to lower the amount of type I and to increase the proportion of type III collagen in the wall of the aorta. These changes are significant in prevention or in regression of changes induced by chronic oxidative stress. This effect of polyphenols is most likely the result of their influence on MMP-1 and TIMP activities through which they positively influence the collagen types I and III content ratio in the vascular wall in favor of the type III collagen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.