This letter reports on highly sensitive optical absorption measurements on organic donor-acceptor solar cells, using Fourier-transform photocurrent spectroscopy ͑FTPS͒. The spectra cover an unprecedented dynamic range of eight to nine orders of magnitude making it possible to detect defect and disorder related sub-band gap transitions. Direct measurements on fully encapsulated solar cells with an active layer of poly͓2-methoxy-5-͑3Ј ,7Ј -dimethyl-octyloxy͔͒-p-phenylene-vinylene:͑6,6͒-phenyl-C61-butyric-acid ͑1:4 weight ratio͒ enabled a study of the intrinsic defect generation due to UV illumination. Solar cell temperature annealing effects in poly͑3-hexylthiophene͒:PCBM ͑1:2 weight ratio͒ cells and the induced morphological changes are related to the changes in the absorption spectrum, as determined with FTPS.
Microcrystalline silicon (μc-Si) based single junction solar cells are deposited by VHF PECVD using a showerhead cathode at high pressures in depletion conditions. At a deposition rate of 4.5 nm/s, a stabilized conversion efficiency of 6.7 % is obtained for a single junction solar cell with a μc-Si i-layer of 1 μm. The i-layer is made near the transition from amorphous to crystalline. In order to control the material properties in the growth direction, the hydrogen dilution of silane in the gas phase is graded following different profiles with a parabolic shape. It is observed that the performance of solar cells deposited at high rate improves under light soaking conditions at 50 °C, which we attribute to post deposition equilibration of a fast deposited transition material.The performance is lower at higher rates due to poorer i-layer quality (higher defect density), which may be attributed to smaller relaxation times for growth precursors at the growth surface and the higher energy ion bombardment at higher plasma power. High process pressures can be used to reduce the ion energy by decreasing the mean free path. We have introduced an additional method to limit the ion energy by controlling the DC self bias voltage using an external power source. In this way the quality of the μc-Si layers and the performance of the solar cells is further improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.