ABSTRACT:Palm trees play an important role as they are widely used in a variety of products including oil and bio-fuel. Increasing demand and growing cultivation have created a necessity in planned farming and the monitoring different aspects like inventory keeping, health, size etc. The large cultivation regions of palm trees motivate the use of remote sensing to produce such data. This study proposes an object detection methodology on the aerial images, using shape feature for detecting and counting palm trees, which can support an inventory. The study uses circular autocorrelation of the polar shape matrix representation of an image, as the shape feature, and the linear support vector machine to standardize and reduce dimensions of the feature. Finally, the study uses local maximum detection algorithm on the spatial distribution of standardized feature to detect palm trees. The method was applied to 8 images chosen from different tough scenarios and it performed on average with an accuracy of 84% and 76.1%, despite being subjected to different challenging conditions in the chosen test images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.