Melissa officinalis L., popularly known as lemon balm, is an aromatic plant widely used in medicine, cosmetics, and pharmaceutical industries for its essential oil rich in phenylpropanoids, terpenes, and phenolics. This study aimed to assess the effect of growth regulators on the development and physiological and biochemical metabolism of M. officinalis cultured in vitro. Seeds were inoculated in Murashige and Skoog medium and added with the regulators 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) according to six different treatments. After 90 days of culture, plants were evaluated for growth and biochemical and physiological parameters (flavonoids, anthocyanins, and chlorophyll). The balance between regulators interfered with plant growth, which increased in the presence of 0.2 mg L-1 BAP. In this treatment, the plants had greater growth with more leaves, and the biomass production of shoots and roots was higher than the control. Growth regulators did not influence nitrogen assimilation or flavonoid production; however, total chlorophyll and anthocyanin indexes were enhanced by treatment with BAP at concentrations ranging from 0.2 to 0.5 mg L-1. Auxin treatment did not improve root production or growth but favored callus formation when combined with 0.5–3.0 mg L-1 BAP. The results indicate that high BAP concentrations (above 1.0 mg L-1) should not be used in in vitro production of lemon balm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.