Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. They are colorants and critical components of the human diet as antioxidants and provitamin A. In this review, we summarize current knowledge of the genes and enzymes involved in carotenoid metabolism and describe recent progress in understanding the regulatory mechanisms underlying carotenoid accumulation. The importance of the specific location of carotenoid enzyme metabolons and plastid types as well as of carotenoid-derived signals is discussed.
BackgroundIn plants, microRNAs (miRNAs) regulate gene expression mainly at the post-transcriptional level. Previous studies have demonstrated that miRNA-mediated gene silencing pathways play vital roles in plant development. Here, we used a high-throughput sequencing approach to characterize the miRNAs and their targeted transcripts in the leaf, flower and fruit of sweet orange.ResultsA total of 183 known miRNAs and 38 novel miRNAs were identified. An in-house script was used to identify all potential secondary siRNAs derived from miRNA-targeted transcripts using sRNA and degradome sequencing data. Genome mapping revealed that these miRNAs were evenly distributed across the genome with several small clusters, and 69 pre-miRNAs were co-localized with simple sequence repeats (SSRs). Noticeably, the loop size of pre-miR396c was influenced by the repeat number of CUU unit. The expression pattern of miRNAs among different tissues and developmental stages were further investigated by both qRT-PCR and RNA gel blotting. Interestingly, Csi-miR164 was highly expressed in fruit ripening stage, and was validated to target a NAC transcription factor. This study depicts a global picture of miRNAs and their target genes in the genome of sweet orange, and focused on the comparison among leaf, flower and fruit tissues.ConclusionsThis study provides a global view of miRNAs and their target genes in different tissue of sweet orange, and focused on the identification of miRNA involved in the regulation of fruit ripening. The results of this study lay a foundation for unraveling key regulators of orange fruit development and ripening on post-transcriptional level.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-695) contains supplementary material, which is available to authorized users.
BackgroundMelon fruit flesh color is primarily controlled by the “golden” single nucleotide polymorhism of the “Orange” gene, CmOr, which dominantly triggers the accumulation of the pro-vitamin A molecule, β-carotene, in the fruit mesocarp. The mechanism by which CmOr operates is not fully understood. To identify cellular and metabolic processes associated with CmOr allelic variation, we compared the transcriptome of bulks of developing fruit of homozygous orange and green fruited F3 families derived from a cross between orange and green fruited parental lines.ResultsPooling together F3 families that share same fruit flesh color and thus the same CmOr allelic variation, normalized traits unrelated to CmOr allelic variation. RNA sequencing analysis of these bulks enabled the identification of differentially expressed genes. These genes were clustered into functional groups. The relatively enriched functional groups were those involved in photosynthesis, RNA and protein regulation, and response to stress.ConclusionsThe differentially expressed genes and the enriched processes identified here by bulk segregant RNA sequencing analysis are likely part of the regulatory network of CmOr. Our study demonstrates the resolution power of bulk segregant RNA sequencing in identifying genes related to commercially important traits and provides a useful tool for better understanding the mode of action of CmOr gene in the mediation of carotenoid accumulation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0661-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.