Studies into the mechanisms underlying the active emmetropization process by which neonatal refractive errors are corrected, have described rapid, compensatory changes in the thickness of the choroidal layer in response to imposed optical defocus. While high frequency A-scan ultrasonography, as traditionally used to characterize such changes, offers good resolution of central (on-axis) changes, evidence of local retinal control mechanisms make it imperative that more peripheral, off-axis changes also be tracked. In this study, we used in vivo high resolution spectral domain-optical coherence tomography (SD-OCT) imaging in combination with the Iowa Reference Algorithms for 3-dimensional segmentation, to more fully characterize these changes, both spatially and temporally, in young, 7-day old chicks (n = 15), which were fitted with monocular +15 D defocusing lenses to induce choroidal thickening. With these tools, we were also able to localize the retinal area centralis, which was used as a landmark along with the ocular pectin in standardizing the location of scans and aligning them for subsequent analyses of choroidal thickness (CT) changes across time and between eyes. Values were derived for each of four quadrants, centered on the area centralis, and global CT values were also derived for all eyes. Data were compared with on-axis changes measured using ultrasonography. There were significant on-axis choroidal thickening that was detected after just one day of lens wear (∼190 µm), and regional (quadrant-related) differences in choroidal responses were also found, as well as global thickness changes 1 day after treatment. The ratio of global to on-axis choroidal thicknesses, used as an index of regional variability in responses, was also found to change significantly, reflecting the significant central changes. In summary, we demonstrated in vivo high resolution SD-OCT imaging, used in combination with segmentation algorithms, to be a viable and informative approach for characterizing regional (spatial), time-sensitive changes in CT in small animals such as the chick.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.