Except for ortho- and para-H2, little is known about nuclear spin isomers (or spin modifications) of molecules. The main reason is the lack of practical enrichment techniques. Recently, a few enrichment methods were developed, which opened up new possibilities in the field. These methods are briefly reviewed. Substantial progress in the field has been made by the introduction of light-induced drift as a gas-phase separation tool. This is illustrated by extensive data on CH3F, which reveal that the gas-phase ortho-para conversion is governed by intramolecular mixing of the nuclear spin states. The role of direct ortho-para transitions is small. Various aspects of the conversion were investigated in detail: pressure and collision partner dependence, isotope effect, and temperature dependence. The most decisive information on the spin conversion mechanism is derived from the observation of level-crossing resonances in an electric field and the quantum Zeno effect induced by collisions.
STAR appears to be at least as effective for early coronary recanalization as and significantly more fibrin-specific than accelerated RTPA in patients with evolving myocardial infarction.
We address the problem of structural model identification during normal operating conditions and thus with uncontrolled, unmeasured, and nonstationary excitation. We advocate the use of output-only and covariance-driven subspace-based stochastic identification methods. We explain how to handle nonsimultaneously measured data from multiple sensor setups, and how robustness with respect to nonstationary excitation can be achieved. Experimental results obtained for three real application examples are shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.