To assess the contribution of spiking inner retinal neurons to the multifocal electroretinogram (ERG), recordings were made from four monkeys (Macaca mulatta) before and after intravitreal injections of tetrodotoxin (TTX). TTX blocks all sodium-based action potentials and thus terminates spiking activity of amacrine and ganglion cells. TTX eliminated a large component from the control responses, and this TTX-sensitive component was present as early as 10 ms after the stimulus. Before injection with TTX, the 103 focal ERG responses varied in waveform across the retina. After TTX, the response waveforms were largely independent of retinal position, indicating that it was primarily the TTX-sensitive component of the control response that was dependent upon retinal location. Given that retinal ganglion cells compose a sizable proportion of the retinal elements that produce action potentials, it is likely that part of the TTX-sensitive component is due to the spiking activity of these cells. Further, the systematic change in waveform of the TTX-sensitive component with distance from the optic nerve head suggests that part of the TTX-sensitive component may originate from the activity of the ganglion cell axons. Based on these findings, there is reason to be optimistic that the multifocal technique can be employed to study the effects of glaucoma and other diseases that affect the inner retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.