BackgroundAround 80% of the people of Ethiopia are estimated to be relying on medicinal plants for the treatment of different types of human health problems. The purpose of this study was to describe and analyse the use and management of medicinal plants used for the treatment of human health problems by the Maale and Ari communities in southern Ethiopia.MethodsQuantitative and qualitative ethnobotanical field inquiries and analytical methods including individual and focus group discussions (18), observations, individual interviews (n = 74), preference ranking and paired comparison were used. Data were collected in three study sites and from two markets; the latter surveyed every 15 days from February 2011 to February 2012.ResultsA total of 128 medicinal plant species, belonging to 111 genera and 49 families, used as herbal medicine by Maale and Ari communities were documented. Predominantly harvested plant parts were leaves, which are known to have relatively low impact on medicinal plant resources. Species with high familiarity indices included Solanum dasyphyllum, Indigofera spicata, Ruta chalepensis, Plumbago zeylanica and Meyna tetraphylla. Low Jaccards similarity indices (≤ 0.33) indicated little correspondence in medicinal plant use among sites and between ethnic communities. The dominant ways of medicinal plant knowledge acquisition and transfer is vertical: from parents to children through oral means. Gender and site significantly influenced the number of human medicinal plants known currently in the study sites. Age was only a factor of significance in Maale. Marketing of medicinal plants harvested from wild and semi-wild stands is not common. Expansion of agricultural land and lack of cultivation efforts by local communities are mentioned by locals to affect the availability of medicinal plant resources.ConclusionS. dasyphyllum, I. spicata, P. zeylanica, M. tetraphylla, and Oxalis radicosa need to be considered for phytochemical and pharmacological testing to verify their efficacy and determine their dosages. Land use planning and development initiatives in the area and beyond need to sharply focus on strategies that could alleviate the major threats affecting medicinal plant resources in the landscape and encourage their cultivation to enhance their availability and complement ex-and in-situ conservation.
a b s t r a c tPigeonpea [Cajanus cajan (L.) Millsp.] is a versatile, stress-tolerant, and nutritious grain legume, possessing traits of value for enhancing the sustainability of dry sub-tropical and tropical agricultural systems. The use of crop wild relatives (CWR) in pigeonpea breeding has been successful in providing important resistance, quality, and breeding efficiency traits to the crop. Current breeding objectives for pigeonpea include increasing its tolerance to abiotic stresses, including heat, cold, drought, and waterlogging. Here we assess the potential for pigeonpea CWR to be further employed in crop improvement by compiling wild species occurrence and ex situ conservation information, producing geographic distribution models for the species, identifying gaps in the comprehensiveness of current germplasm collections, and using ecogeographic information to identify CWR populations with the potential to contribute agronomic traits of priority to breeders. The fifteen prioritized relatives of pigeonpea generally occur in South and Southeast Asia to Australia, with the highest concentrations of species in southern India and northern Australia. These taxa differ considerably among themselves and in comparison to the crop in their adaptations to temperature, precipitation and edaphic conditions. We find that these wild genetic resources are broadly under-represented in ex situ conservation systems, with 80% of species assessed as high priority for further collecting, thus their availability to plant breeders is insufficient. We identify species and highlight geographic locations for further collecting in order to improve the completeness of pigeonpea CWR germplasm collections, with particular emphasis on potential traits for abiotic stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.