In this paper, we introduce the notion of exterior space and give a full embedding of the category P of spaces and proper maps into the category E of exterior spaces. We show that the category E admits the structure of a closed simplicial model category. This technique solves the problem of using homotopy constructions available in the localised category HoE and in the "homotopy category" TTOE, which can not be developed in the proper homotopy category.On the other hand, for compact metrisable spaces we have formulated sets of shape morphisms, discrete shape morphisms and strong shape morphisms in terms of sets of exterior homotopy classes and for the case of finite covering dimension in terms of homomorphism sets in the localised category.As applications, we give a new version of the Whitehead Theorem for proper homotopy and an exact sequence that generalises Quigley's exact sequence and contains the shape version of Edwards-Hastings' Comparison Theorem.
For each integer n ≥ 0, we give a distinct closed model category structure to the categories of spaces and of simplicial sets. Recall that a non-empty map is said to be a weak equivalence if it induces isomorphisms on the homotopy groups for any choice of base point. Putting the condition on dimensions ≥ n, we have the notion of a weak n-equivalence which is at the base of the nth closed model category structure given here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.