Growth of Streptococcus salivarius ATCC 25975 in the presence of n-alkanols in the series methanol to decan-1-ol led to a decrease in the unsaturated to saturated fatty acid ratio. Each member of the set of n-alkanols which was examined over a range of concentrations possessed a point at which extracellular glucosyltransferase (GTF) production was minimal; increasing the concentration of the n-alkanol past this point stimulated GTF production. This effect was greatest with hexan-1-ol although it was observed to a lesser extent with pentan-1-ol and heptan-1-ol. Reduced cell-associated fructosyltransferase activity was observed with increasing concentrations of each n-alkanol. Growth in the presence of 25 mM-propan-1-ol gave rise to a fatty acid profile in which 55% of the fatty acids were of an odd chain length. S. salivarius ATCC 25975 was shown to be able to utilize ethanol in a similar manner to propan-1-ol by growing it in the presence of 400 mM-[14C]ethanol. Analysis of the membrane lipids at the stationary phase of growth indicated that 17.6% of the carbon of the fatty acids was derived from ethanol. A leaky adh mutant, S. salivarius MJ 37501, was isolated. The leaky nature of the mutant enabled it to incorporate reduced levels of odd-chain-length fatty acids into its membrane lipids when grown in the presence of 100 mM-propan-1-ol, but not when grown in the presence of 25 mM-propan-1-ol. S. salivarius ATCC 25975 therefore metabolized propan-1-ol (and ethanol) via a constitutive alcohol dehydrogenase.
Growth of Streptococcus salivarius ATCC 25975 in a Na+-based medium containing 1 to 50 mM K+ enhanced extracellular glucosyltransferase production by 3.7-fold over the level of enzyme found in a K+-based medium containing 184 mM K+. Enzyme synthesis and secretion were further enhanced in a nonlinear manner with respect to the concentration of K+ in the medium when cells were cultured from an inoculum grown in the presence of 1 mM K+. This concentration of K+ was the minimum required to maintain a near-maximum growth rate for S. salivarius in medium where K+ was limited. A maximum sevenfold stimulation of glucosyltransferase production occurred at 18 mM K+ under these conditions. Analysis of the total membrane lipids showed that the composition of octadecanoic acid increased with decreasing K+ concentration essentially at the expense of the octadecenoic acid moiety. Extracellular glucosyltransferase production was found to be directly related to the ratio of these two fatty acids. Similar confirmatory results over a greater range of enzyme production were obtained with nonproliferating cell suspensions.
Streptococcus sanguis G9B was grown in continu6tis culture at different generation times and pH values in media containing either glucose or fructose and differing in the concentrations of Na+ and K'. The growth pH, carbohydrate, and cation concentration each affected the yield of organisms, their ability to adhere to saliva-coated hydroxyapatite beads, and their hydrophobicity, as measured by adhesion to hexadecane. There was no correlation between adhesion to saliva-coated hydroxyapatite beads and hydrophobicity, the values for hydrophobicity varying between 44 and 83% for organisms that adhered poorly and between 24 and 75% for those that adhered effectively. For organisms grown in batch culture at pH 6.0 or 7.0 there was similarly no correlation between adhesion and hydrophobicity. The growth conditions also had a considerable influence on the productibn of extracellular protein. The total amount was greater at pH 7.5 than at other pH values, and there were also differences in the individual components in response to changes in generation time, pH, carbohydrate source, and catidn concentration. Two protein bands were identified, namely, glucosyltransferase and protein P1 (also called antigen B or I/II). However, there was no correlation between a particular protein component and adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.