We analyze the light scattered by a single InAs quantum dot interacting with a resonant continuous-wave laser. High resolution spectra reveal clear distinctions between coherent and incoherent scattering, with the laser intensity spanning over four orders of magnitude. We find that the fraction of coherently scattered photons can approach unity under sufficiently weak or detuned excitation, ruling out pure dephasing as a relevant decoherence mechanism. We show how spectral diffusion shapes spectra, correlation functions, and phase-coherence, concealing the ideal radiativelybroadened two-level system described by Mollow.
A black hole X-ray binary produces hard X-ray radiation from its corona and disk when the accreting matter heats up. During an outburst, the disk and corona co-evolves with each other. However, such an evolution is still unclear in both its geometry and dynamics. Here we report the unusual decrease of the reflection fraction in MAXI J1820+070, which is the ratio of the coronal intensity illuminating the disk to the coronal intensity reaching the observer, as the corona is observed to contrast during the decay phase. We postulate a jet-like corona model, in which the corona can be understood as a standing shock where the material flowing through. In this dynamical scenario, the decrease of the reflection fraction is a signature of the corona’s bulk velocity. Our findings suggest that as the corona is observed to get closer to the black hole, the coronal material might be outflowing faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.