The use of supercritical carbon dioxide as a processing solvent for the physical processing of polymeric materials is reviewed. Fundamental properties of CO2/polymer systems are discussed with an emphasis on available data and measurement techniques, the development of theory or models for a particular property, and an evaluation of the current state of understanding for that property. Applications such as impregnation, particle formation, foaming, blending, and injection molding are described in detail including practical operating information for selected topics. The review concludes with some forward-looking discussion on the future of CO2 in polymer processing.
Exosomes are attractive nucleic-acid carriers because of their favourable pharmacokinetic and immunological properties and of their ability to penetrate physiological barriers that are impermissible to synthetic drug-delivery vehicles. However, inserting exogenous nucleic acids, especially large messenger RNAs (mRNAs), into cell-secreted exosomes leads to low yields. Here, we report a cellular-nanoporation method for the production of large quantities of exosomes containing therapeutic mRNAs and targeting peptides. We transfected various source cells with plasmid DNAs, and stimulated the cells with a focal and transient electrical stimulus that promotes the release of exosomes carrying transcribed mRNAs and targeting peptides. Compared to bulk electroporation and to other exosome-production strategies, cellular nanoporation produced up to 50-fold more exosomes and more than a 10 3 -fold increase in exosomal mRNA transcripts, even from cells with low basal levels of exosome secretion. In orthotopic PTEN-deficient glioma mouse models, mRNA-containing exosomes restored tumour-suppressor function, enhanced tumourgrowth inhibition, and increased animal survival. Cellular nanoporation may enable the use of exosomes as a universal nucleic-acid carrier for applications requiring transcriptional manipulation.
Many transfection techniques can deliver biomolecules into cells, but the dose cannot be controlled precisely. Delivering well-defined amounts of materials into cells is important for various biological studies and therapeutic applications. Here, we show that nanochannel electroporation can deliver precise amounts of a variety of transfection agents into living cells. The device consists of two microchannels connected by a nanochannel. The cell to be transfected is positioned in one microchannel using optical tweezers, and the transfection agent is located in the second microchannel. Delivering a voltage pulse between the microchannels produces an intense electric field over a very small area on the cell membrane, allowing a precise amount of transfection agent to be electrophoretically driven through the nanochannel, the cell membrane and into the cell cytoplasm, without affecting cell viability. Dose control is achieved by adjusting the duration and number of pulses. The nanochannel electroporation device is expected to have high-throughput delivery applications.
Connective tissue growth factor (CCN2) drives fibrogenesis in hepatic stellate cells (HSC). Here we show that CCN2 up-regulation in fibrotic or steatotic livers, or in culture-activated or ethanol-treated primary mouse HSC is associated with a reciprocal down-regulation of microRNA-214 (miR-214). By using protector or reporter assays to investigate the 3′-untranslated region (UTR) of CCN2 mRNA, we found that induction of CCN2 expression in HSC by fibrosis-inducing stimuli was due to reduced expression of miR-214 which otherwise inhibited CCN2 expression by directly binding to the CCN2 3′-UTR. Additionally, miR-214 was present in HSC exosomes, which were bi-membrane vesicles, 50–150nm in diameter, negatively charged (−26mV), and positive for CD9. MiR-214 levels in exosomes but not in cell lysates were reduced by pre-treatment of the cells with the exosome inhibitor, GW4869. Co-culture of miR-214-transfected donor HSC with CCN2 3′-UTR luciferase reporter-transfected recipient HSC resulted in miR-214- and exosome-dependent regulation of a wild type CCN2 3′-UTR reporter but not of a mutant CCN2 3′-UTR reporter lacking the miR-214 binding site. Exosomes from HSC were a conduit for uptake of miR-214 by primary mouse hepatocytes. Down-regulation of CCN2 expression by miR-214 also occurred in human LX-2 HSC, consistent with a conserved miR-214 binding site in the human CCN2 3′-UTR. MiR-214 in LX-2 cells was shuttled via exosomes to recipient LX-2 cells or human HepG2 hepatocytes, resulting in suppression of CCN2 3′-UTR activity or expression of CCN2 downstream targets, including αSMA or collagen. Experimental fibrosis in mice was associated with reduced circulating miR-214 levels. Conclusion Exosomal transfer of miR-214 is a paradigm for the regulation of CCN2-dependent fibrogenesis and identifies fibrotic pathways as targets of epigenetic regulation by exosomal miRs.
Although cellular therapies represent a promising strategy for a number of conditions, current approaches face major translational hurdles, including limited cell sources and the need for cumbersome pre-processing steps (for example, isolation, induced pluripotency)1–6. In vivo cell reprogramming has the potential to enable more-effective cell-based therapies by using readily available cell sources (for example, fibroblasts) and circumventing the need for ex vivo pre-processing7,8. Existing reprogramming methodologies, however, are fraught with caveats, including a heavy reliance on viral transfection9,10. Moreover, capsid size constraints and/or the stochastic nature of status quo approaches (viral and non-viral) pose additional limitations, thus highlighting the need for safer and more deterministic in vivo reprogramming methods11,12. Here, we report a novel yet simple-to-implement non-viral approach to topically reprogram tissues through a nanochannelled device validated with well-established and newly developed reprogramming models of induced neurons and endothelium, respectively. We demonstrate the simplicity and utility of this approach by rescuing necrotizing tissues and whole limbs using two murine models of injury-induced ischaemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.